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Abstract

The goal of multi-voxel pattern analysis (MVPA) in BOLD imaging is to determine whether patterns of activation
across multiple voxels change with experimental conditions. MVPA is a powerful technique, its use is rapidly growing,
but it poses serious statistical challenges. For instance, it is well-known that the slow nature of the BOLD response
can lead to greatly exaggerated performance estimates. Methods are available to avoid this overestimation, and we
present those here in tutorial fashion. We go on to show that, even with these methods, standard tests of significance
such as Students’ T and the binomial tests are invalid in typical MRI experiments. Only a carefully constructed
permutation test correctly assesses statistical significance. Furthermore, our simulations show that performance
estimates increase with both temporal as well as spatial signal correlations among multiple voxels. This dependence
implies that a comparison of MVPA performance between areas, between subjects, or even between BOLD signals
that have been preprocessed in different ways needs great care.
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Introduction

One of the strengths of functional magnetic resonance
imaging (fMRI) is that it provides information on the whole brain
in a single experiment. A typical experiment generates BOLD
responses for around 500,000 separate small cubes (voxels)
across the human brain. While most data analyses consider
each of these voxels separately, a growing field of research
analyzes the multivariate patterns of BOLD responses. This so-
called multi-voxel pattern analysis (MVPA) has been used
successfully to demonstrate the encoding of a wide range of
information in the BOLD response in specific brain regions (e.g.
faces and objects [1], orientation [2], and motion [3]) Although
we do not agree with all of their recommendations concerning
the statistical analysis of multi-voxel patterns, good
introductions and overviews of the MVPA method can be found
in [4–6].

In a typical MVPA study, the subject in the scanner is made
to alternate between two or more states (e.g. viewing houses
or faces, or feeling sad vs. happy) and the researcher
investigates whether one can determine the state of the subject
from the pattern of BOLD activity in a certain brain area. This is
a pattern classification task: is there a pattern of BOLD activity
that corresponds to ‘House’ but not ‘Face’, or ‘Sad’ and not
‘Happy’?

To analyze such data, the researcher feeds BOLD
responses together with the correct class labels to a
classification algorithm [2]. (For instance, the BOLD response
in the voxels of the fusiform face area in 10 trials in which the
subject saw a house and 10 trials in which the subject saw a
face.) On the basis of this training set, the algorithm determines
a classifier that best captures the pattern structure of the
training set. Then, the researcher provides a new set of BOLD
responses to the classifier (5 trials in which faces were shown,
5 in which houses were shown), which returns predicted class
labels (‘house’, ’house’, ’face’,…) for all the trials. These
predictions are compared to the correct class labels to
determine the percentage of trials classified correctly. If this
performance of the classifier is significantly above chance, one
concludes that the BOLD responses contain information about
the classified states, and infers that the brain area where the
signals originated is somehow involved in the neural
representation of these states.

While such an analysis sounds straightforward in theory,
there are serious issues in applying this procedure to BOLD
imaging data. We consider three separate problems in the
three subsections of the Results. The first is estimation; the
problem of obtaining an unbiased estimate of the (average)
performance of the classifier. It is well known that estimation is
affected by the slow temporal correlations in the BOLD signal,
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and multiple researchers have suggested the solution that we
discuss here (Leave-Block-Out cross-validation). We present it
here only for completeness and to provide context to
understand the other two problems, but refer to [4] for a fuller
description. The second problem is significance testing. We
show that some of the existing approaches can lead to greatly
inflated estimates of significance (even when the average
performance has been estimated correctly). Building on
previous work [7,8] we show that a carefully constructed
permutation test provides a correct estimate of significance.
The third problem is the comparison of performance estimates.
Our simulations illustrate the influence of spatial and temporal
correlations on classification performance. Given that spatial
and temporal correlations could be introduced by differences in
hemodynamic coupling across regions or subject groups, or
even by differences in data preprocessing, these findings imply
that statistical comparisons of performance across areas, or
across subject groups require great care.

While our treatment is based on simulations that make
simplifying assumptions (e.g. about the hemodynamic
response function and spatial correlations), focuses on a
support vector machine for classification, and investigates a
two-class block-design experiment only, the issues are quite
general and apply at least conceptually to any study that uses
multi-voxel pattern classification. The goal of this report is not
to discredit previous research, nor do we claim that we are the
first to note these problems. Our goal is to analyze the
problems, illustrate them with simulated data, alert the reader
to the seriousness of the problems and the inadequacy of
some purported solutions, and provide alternative solutions
where available.

Methods

All experiments used simulated data based on simple
assumptions about the nature of neural signals and
neurovascular coupling. For simplicity we only considered
experimental paradigms with two classes (A and B).

Unless otherwise specified, the neural response in each
voxel at each point in time was simulated as a random number
drawn from a Gaussian distribution with zero mean and unity
variance. This was so irrespective of whether the point in time
corresponded to Class A or Class B. Thus, there was no
relation between neural activity and the classes of the
experimental design, nor was there any correlation among
voxels. In other words, this simulated brain had no knowledge
whatsoever of the experimental conditions. Using such a ‘null’
data set is a convenient way to test an analysis procedure as
any significant classification performance must be artifactual
and therefore a reflection of an inappropriate data analysis. Put
differently, because there was no true class-related signal in
the simulated neural data, every significant classification was a
false positive.

From these simulated neural signals we derived BOLD
responses per voxel by convolving the neural activity with a
hemodynamic response function (HRF) [9]: h=(t)ae-t/b, with
a=8.6 and b=0.547.

We simulated a canonical block-design experiment in which
blocks of class A alternated with blocks of class B. The TR was

2s, and each block was 32 seconds long, hence it contained 16
volumes, which we refer to as time points. In different
experiments, each block was repeated 5, 10, or 15 times,
resulting in 160, 320, or 480 time points per experiment. We
removed the first 8 time points (16s) from each block to avoid
spill-over activation from the previous block.

Results

We generated simulated data (See Methods) for a typical
block-design experiment with two classes (A and B). The
Results section is divided into three subsections, covering the
typical analysis of such data. The first (Estimation) discusses
the estimation of the classification performance based on such
a data set. The second (Significance Testing) shows how
standard methods to assess the statistical significance of
classification performance can fail dramatically and provides an
alternative, reliable test. The third (Performance Comparisons)
analyzes issues that arise when one wishes to compare
performance across areas or across subject groups.

Estimation
We trained a linear support vector machine (SVM [10–12]:)

on the training data (80% of the time points randomly chosen
from the entire data set, while ensuring that each class
occurred equally often in the set) and tested the classifier on
the remaining 20% of the data. This random cross-validation
(CV) was repeated 100 times per data set, with independent
random assignments to training and test sets for each run. The
performance was defined as the mean performance across
these CV repeats.

Figure 1a shows classification performance as a function of
the number of time points for regions of interest (ROIs) that
contained different numbers of voxels. The performance was
always well above “chance” (50% for this 2 class problem) and
highest for a small number of time points and a large number of
voxels. This is mysterious; how can a classifier perform above
chance even though the underlying neural signal was pure
noise and had no relationship with the classes?

The explanation of this above chance performance lies in the
sluggishness of the hemodynamic response function. Even
though the neural signals were independent across time points,
the convolution with the slow HRF generated a BOLD response
in which nearby time points were necessarily similar. Because
nearby time points in a block design also typically correspond
to the same class, there is in fact real “signal” that allows the
classifier to perform above chance.

This problem is more pronounced for large ROIs because
the BOLD response in each voxel contributes some
independent (spurious) signal because the underlying neural
signals were independently drawn from Gaussian distributions.
The problem is most pronounced for a small number of time
points because in a smaller data set, more test time points will
be (temporally) near the training time points and, therefore
more likely to share the spurious signal.

The solution to this particular problem is to leave enough
time between training and test data such that the slow BOLD
response cannot introduce temporal correlations between
them. In practice, this is most easily done by training the
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classifier on one set of randomly chosen blocks (rather than
randomly chosen time points), and testing it on a separate set
of blocks. This is called Leave-Block-Out cross-validation
(LBO-CV) and is used in many MVPA studies [4]. As long as
the time between training and test blocks is longer than the
expected duration of the hemodynamic response, this
procedure should resolve this particular issue.

We re-analyzed the above experiment, now using LBO-CV.
In each CV repeat we chose a single block from each class to
serve as test set, and used the remaining blocks as training
set. This was repeated such that each block served as test set
once. The performance was averaged over these repeats.

Figure 2 shows the results. Each panel shows a histogram of
average LBO-CV performance values for experiments with
different numbers of time points and a fixed number of 512
voxels. The green lines show the median performance, which
is indistinguishable from 50% in each case; this confirms our
intuition that on average the SVM should not be able to do this
classification task.

Now that we have a method (LBO-CV) that correctly
estimates the average classification performance, we move on
to the next problem; assessing the statistical significance of a
particular performance value.

Significance Testing
Figure 2 demonstrates that significance testing is not a trivial

issue. Even though the average performance was 50% in each
case, the classifier often had levels of performance that were
considerably above 50%. This implies that obtaining a
classification performance in, for instance, the 60-70% range is
not unlikely even when the neural data consist entirely of

Figure 1.  Mean classification performance in a two-class
block design experiment.  The randomly cross-validated
percentage correct (y-axis) is shown as a function of the
number of time points (x-axis) for three ROI sizes (64, 128,and
512 voxels). Error bars show the standard deviation across
1000 independent null data sets. This figure shows that using
randomly chosen time points for cross-validation generates
spurious classification performance.
doi: 10.1371/journal.pone.0069328.g001

Gaussian noise. Moreover, the variance of the performance
distributions depended on the number of time points (compare
across panels A-C in Figure 2). A valid statistical test must take
this into account.

To assess the validity of statistical tests that have been used
in some MVPA studies, we simulated 1000 null data sets
(neural signals and classes). The simulation procedure was
identical to that used for Figure 2. For each of these data sets,
we performed a statistical test of the null hypothesis that there
was no association between signals and classes at the α=0.05
level. Because there was no true signal in our simulations,
every performance value that a test deemed significant was a
false positive. For the alpha-level used, a valid statistical test
would generate a positive result in 5% of cases. In the following
sections, we show how commonly used statistical methods
(binomial test, T-test) generate far more false positives. The
common underlying reason is that these tests assume
independence of performance estimates, even though the data
that these estimates are based upon have considerable
overlap. We then describe a permutation test that avoids this
problem and correctly assesses significance.

Binomial Test.  Because each of the N test sets in LBO-CV
is independent, and one would expect 50% (“chance”)
performance on each test set, one might reason that –under
the null hypothesis-the LBO-CV procedure is equivalent to
flipping a coin N times. If this argument were correct, one could
determine significance with a simple binomial test. For the
specific cross-validation procedure used in Figure 2, N was
equal to the number of blocks because each block was used as
test set once. Consider for instance the experiment in Figure

Figure 2.  Leave-Block-Out cross-validation.  Each panel
shows the distribution of classification performance across
5000 independent null data sets containing 512 voxels. A)
Experiments with 160 time points. B) Experiments with 320
time points. C) Experiments with 480 time points. The green
line shows the median of the distribution, the red line the 95th

percentile. LBO-CV correctly estimated performance on
average (50%), but the performance null distributions were
very wide; even on null data, a performance in the 60-70%
range is not unlikely.
doi: 10.1371/journal.pone.0069328.g002
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2c, which had 480 time points (15 repeated blocks of each
condition). Using a binomial test with N =15 failed to reject the
null hypothesis for any of the 1000 data sets. From this, one
might conclude that the binomial test is overly conservative
(5% of the tests should have rejected the null hypothesis), but
the next example shows that this interpretation is incorrect.

A good method to improve the estimate of the average
classification performance is to test each block multiple times
(each time in combination with a different block from another
class). However, if the number of repeated CV sets is used in a
binomial test, statistical significance is greatly overestimated.
To continue the example based on the data of Figure 2c, we
re-calculated the performance 10 times per block, each time
with a different paired block from the other condition. The mean
performance across the 10 sets was still 50%, but using the
number of repetitions (N=10*15) in the binomial test led to the
incorrect conclusion that 16% of the findings were statistically
significant. Figure 3a shows how the percentage of false
positives increased with the number of CV repeats.

The reason that the binomial test gives incorrect results is
that –even in a single CV repeat-the data sets used to train the
classifier always overlap. Moreover, when using multiple CV-
repeats, even the data sets used to test the classifier will
overlap. In other words, the multiple assessments of
performance are not independent coin flips. Hence, regardless
of whether one does single or multiple CV repeats, the binomial
test in which separate CV tests are used as independent
samples is invalid and does not provide an accurate

Figure 3.  Traditional parametric tests are invalid for the
assessment of statistical significance of classification
performance.  A) Binomial Test. B) Student’s T-test. Both
panels show the percentage of 1000 experiments with null data
that were considered significant at the 0.05 level. Because the
data had no signal, all of these are false positives. The dashed
lines show the expected percentage of false positives for a
correct statistical test (5%). The use of multiple CV sets led to
large overestimates of significance. This analysis shows that
neither binomial, nor Student’s T-tests can be used to
determine the statistical significance of classifier performance.
doi: 10.1371/journal.pone.0069328.g003

assessment of the statistical significance of classification
performance.

Student’s T-Test.  Given its ubiquity one might be tempted
to use a T-test to determine whether the mean performance
value over the N test sets is different from 50%. We analyzed
our null data with T-tests at alpha=0.05. Figure 3b shows the
false positive rates. Even for a single LBO-CV repeat, they
exceeded 5%. The main reason why the T-test fails is again
the overlap between the training sets. As a consequence, the
performance samples from these multiple CV sets are not
independent, and a T-Test is not valid. The overlap between
sets increases with the number of sets that are constructed
from a fixed size data set, which explains why the fraction of
false positive results increases with the number of CV repeats
(Figure 3b).

Error bars.  Often, MVPA classification performance values
are presented with error bars corresponding to the standard
error measured over CV sets. This data presentation suggests
that the error bars allow one to assess the statistical
significance by determining whether the distance between
performance and chance level (50%) is large compared to the
length of the error bar. However, because this eye ball test is
implicitly based on a T-test, the simulations of Figure 3b show
that such a representation is misleading.

In addition, we note that while chance performance is 50%
on average, a particular data set drawn from Gaussian noise
can easily generate cross-validated performance well above
50% (as shown in Figure 2). In other words, “chance” is not a
single value, but a distribution of values. To allow eye-ball tests
of significance one must provide error bars on the chance level
in addition to error bars on the performance estimate. For
instance, a useful convention would be to show the 95th

percentile of the performance null distribution (see below).
Permutation Tests.  The parametric tests investigated

above fail to provide an accurate assessment of statistical
significance. A better approach uses a permutation test [7]. In
such a test one creates null data sets by randomly shuffling the
class labels; this destroys any potential relationship between
classes and signals. Second, one analyzes the performance on
this null data set in the same way as the original data. This
process is repeated many times to create a distribution of the
expected performance levels under the null hypothesis (i.e. that
there is no relationship between signal and classes). The
performance estimated on the true data is considered
significant (at p<0.05) if it is larger than the 95th percentile of
the null distribution. This approach makes no assumptions
about the shape of the performance distribution, or about the
shape of the distribution of the raw signals. All of these
distributions are estimated from the data. While
computationally more demanding than parametric tests these
permutation tests are well within the reach of modern day
computers and has been advocated as an appropriate test for
image based analysis [8].

As there are multiple ways to implement a permutation test it
is important to discuss which one leads to correct assessments
of significance. We discuss two approaches here.

Global Permutation Test
In what we call a global permutation test, the relationship

between BOLD response and classes is destroyed by
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randomly shuffling the labels across the whole data set. A label
anywhere in the data set can be shuffled to a new time point
anywhere else in the data set. Figure 4a shows the fraction of
null data sets with a classification performance that was above
the 95th percentile of the cumulative distribution based on 1000
random global permutations of the class labels. Clearly there
are too many false-positives; the test overestimates statistical
significance.

The reason for this high false-positive rate is that in the
original (non-shuffled) data set, nearby points in time had
similar signals and similar class labels. Hence if time point n
happened to be classified correctly, then it was likely that n-1
and n+1 would be classified correctly too. The converse is true
as well; if n happened to be classified incorrectly, then n ± 1
would most probably be incorrect too. These temporal
correlations increase the variance of the distribution of
performance values when compared to a data set without
temporal correlations. Due to this larger variance one is more
likely to find performance values in the original (non-shuffled)
data set that are above the 95th or below the 5th percentile of
the shuffled data set, even though the average performance in
both sets is 50%.

The underlying problem here is the same as that in
performance estimation: the sluggishness of the BOLD
response (See above). The solution to this problem is to keep
the block structure of the experiment intact when shuffling the
data.

Figure 4.  Permutation Tests.  A) Global permutations. B)
Block permutations. Each data point shows the percentage of
experiments (out of 1000) based on null data that were
considered significant according to a statistical test at the 0.05
level. The dashed lines show the expected percentage of false
positives for a correct statistical test (5%). This figure shows
that random, global permutations lead to overestimates of
significance, while the block permutation test in B correctly
estimates the significance of the classification performance.
doi: 10.1371/journal.pone.0069328.g004

Block Permutation Test
Rather than shuffling single labels, one should shuffle entire

blocks of labels. This allows the temporal correlations within
the block to play the same role in the shuffled data set as they
do in the non-shuffled data set. Second, to ensure that
performance is measured equally on all classes, each of the
permutations should have an equal number of blocks from
each class. We refer to this procedure as a (balanced) block
permutation test. Figure 4b shows that using this procedure,
only 5% of all simulated data sets were considered to have a
mean performance that was statistically significant at the 0.05
level. This is exactly what one would expect for null data. The
block permutation test is the only test of the statistical
significance of classifier performance that we can recommend.

Performance comparisons
As explained above, spurious classification performance in a

block design experiment arises from the temporal correlations
in the BOLD response induced by the slow hemodynamic
response function. This suggests that performance measures
will depend on the shape of the HRF. To investigate this, we
modeled three HRFs by scaling their width by a factor of 0.5 (a
short HRF), 1 (the canonical HRF) or 1.5 (a long HRF). The
insert in Figure 5 shows the shape of these three HRFs.

We created data sets with a true class-related signal by
injecting one neural activity pattern into blocks of class A and a

Figure 5.  The HRF in a region of interest affects
classification performance.  The green and red curves show
mean performance on data sets with true neural signal (signal
strength s was 0.1; see main text), Green curve: mean
performance on 64 voxels, red curve: mean performance on
128 voxels. Dashed curve: level of performance achieved on
95% of a null data sets consisting of 64 voxels (i.e. the
significance cut-off). This figure shows that stretching the HRF
by 50% can increase classification performance by nearly 10%.
In other words, if it is possible that the HRF could differ
between two data sets, then a difference in classification
performance cannot be used to infer a difference in the
underlying neural response.
doi: 10.1371/journal.pone.0069328.g005
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different activity pattern into blocks of class B. We first
simulated neural noise as we did in all previous simulations by
drawing random numbers from a Gaussian distribution with
zero mean and unit variance. Second, to introduce true signal,
we drew one random number per voxel from a Gaussian
distribution with a mean of zero and standard deviation s. This
resulted in a single neural activity pattern across voxels, which
we added to each of the time points corresponding to class A.
Third we drew a new random pattern across voxels from the
same distribution and added this to the time points
corresponding to class B. When s is large, the difference in
each voxel between activity in time points corresponding to A
and those corresponding to B is large, hence s is a measure of
signal.

Figure 5 shows the mean classification performance on such
a data set as a function of the HRF width. The green curves
shows a simulation based on 64 voxels, the red curve is based
on 128 voxels. Both simulations used s=0.1. Clearly,
performance estimates increased with HRF width, even though
the true neural signal in each of these simulations was the
same.

The dashed curve shows the 95th percentile of the
performance distribution of block-shuffled data (64 voxels). In
other words, it is the cut-off percentage above which the block
permutation test will label performance as significant. Clearly
the cut-off also increased with the duration of the HRF.
Importantly, the green solid curve is below the dashed curve for
all HRFs. This means that statements about the statistical
significance of performance in a single region were not strongly
affected by the HRF width (i.e. even if we do not know the
HRF, the block-permutation test will correctly assess the
significance of the performance).

This same analysis, however, also shows that the numerical
value of the performance is not a meaningful quantification of
the information present in the neural activity of an area. First of
all, it is clear that the number of voxels in an area strongly
affects the performance. The signal per voxel in the larger area
(red curve) was the same as that in the smaller area (green
curve), nevertheless the larger area always outperformed the
smaller area. This is expected as the signal in each voxel is an
independent source of information (in these simulations; in the
brain spatial correlations likely exist; see below). Second, the
figure also shows that an area with the same number of voxels,
and the same signal per voxel, but wider HRF performed better
on the classification task. For this particular simulation,
stretching the HRF by 50% increased the performance nearly
10%.

This analysis shows that when two regions of interest lead to
different classification performances, one cannot infer that the
neural representations in those areas have different neural
signals. The difference could be due to differences in the size
of the areas (which in principle is easy to control for, but see
below) or differences in the HRF. The severity of this problem
will rely on detailed properties of the HRF, as well as signal to
noise ratios.

Spatial Correlations.  In all simulations up to this point, we
assumed that each voxel contained an independent neural
signal. In a typical fMRI experiment, however, the signals in
neighboring voxels are correlated. In this section we investigate

how spatial correlations affect MVPA. We again introduced a
pattern to all class A time points and a different pattern to all
class B time points (as in Figure 5), but now created spatial
correlations in the signal by convolving each pattern with a
Gaussian filter. This could be viewed as a crude model of the
situation where neurons in one voxel carry class-related
signals, but because the neighboring voxels use some of the
same blood supply their BOLD response also contains some
signal. Figure 6 shows that performance increased sigmoidally
with the spread of correlations as measured by the width of the
Gaussian filter.

These simulations show that an area in which the
vasculature leads to spatially widespread changes in blood
oxygenation could generate better MVPA performance than an
area in which the vasculature targets very specific regions,
even if the underlying neural activity in the two areas is
identical. This is another reason why a comparison of
performance between areas – even when the number of voxels
is equal – can be problematic.

In some studies, performance comparisons across areas of
unequal size are done by selecting a subset of voxels from the
larger area that match the total number of voxels in the small
area [13]. Our analysis suggests that this selection
preprocessing should be done with care as a random selection
of voxels from a large area is likely to be less correlated than
neighboring voxels in a small area. These differences in
correlations could lead to differences in classification

Figure 6.  Spatial correlations affect classification
performance.  Each curve shows the mean classification
performance based on a data sets containing true signal (s =
0.1) for a different ROI size as shown in the legend. Error bars
show ±1 standard deviation across 1000 independent data
sets. Spatial correlation on the x-axis represents the standard
deviation of the Gaussian spatial filter, which we use to
simulate the spatial spread of the BOLD response. Data points
are offset horizontally for visual clarity. This figure shows that
spatial correlations in the BOLD response induced by a
spatially unspecific vasculature can inflate classification
performance estimates.
doi: 10.1371/journal.pone.0069328.g006
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performance without any differences in the underlying neural
signals.

Finally, we note that the variance of the performance null
distributions also depends on the number of time points (Figure
2), and the number of voxels (not shown). Therefore non-
parametric tests are better comparisons of classification
performance on data that differ along those dimensions
(whether by preprocessing or experimental design) than tests
that assume homoscedasticity (e.g. ANOVA).

Discussion

We simulated BOLD imaging experiments and analyzed
them with multi-voxel pattern analysis. The temporal
correlations induced by the hemodynamic response function
led to the well-known issue of performance overestimation,
which was resolved with leave-block-out cross-validation. We
also identified another important, and underappreciated
problem in MVPA; the assessment of statistical significance,
which we argue should only be done using block-level
permutation tests and not with binomial or T-tests. Finally, we
show that temporal and spatial correlations (such as those
induced by the HRF) prevent a meaningful direct comparison of
classification performances between areas, or subject groups
in which those HRFs could be different.

Generality
Our simulations made various assumptions and an important

consideration for the practical application of our results is how
general they are. For instance, we chose a specific classifier
(the support vector machine), a specific pattern (the raw BOLD
activity across voxels), a gamma-shaped hemodynamic
response function, and a two-class block-design.

An alternative to the support vector machine is the use of the
Pearson correlation for classification. In this approach, one
calculates the Pearson correlation of a test pattern with the
training patterns from each class, and classifies the test as
belonging to the class with the highest Pearson correlation. We
performed all simulations shown here with this classifier (not
shown), and the results are qualitatively the same. This should
not be surprising as the essence of the problem is not the
classifier but the spatiotemporal correlations in the BOLD
signal and the overlap of training sets in repeated cross-
validation.

In our simulations the patterns simply represented the BOLD
activity across voxels. Some studies, however, use more
complex multivariate measures of brain activity. For instance,
the pattern of beta weights resulting from a GLM analysis. We
see no reason to believe that MVPA based on such patterns
would be immune to the estimation problems highlighted in this
paper given that temporal correlations can at least in principle
affect beta weights. Similarly, because the issues surrounding
significance testing arise from the overlap between training and
test sets, and not from the nature of the patterns themselves,
the same concerns apply. Moreover, with these kinds of
approaches, the potential influence of an incorrect assumption
about the HRF enters at an earlier stage of analysis as it could
amplify or destroy a pattern that is present in the raw data.
However, as the devil is in the details, careful simulations of

combined GLM & MVPA analyses may be needed to
understand the quantitative extent to which this approach
suffers from the problems discussed in this paper.

We used a simplified formula to simulate the hemodynamic
response (See methods), and this may not accurately reflect
the real HRF. But here too, the details do not affect the
qualitative outcome (simulations using a simple boxcar HRF
led to qualitatively similar results; not shown). Any reasonable
assumption about the HRF will introduce temporal correlations
on a time scale of several seconds and these correlations lead
to the potential problems we highlight in this paper.

While we considered only simple ABABAB block designs, the
importance of using LBO-CV applies to many experimental
designs. For instance they apply to multi-class designs
(ABCABCABC), because those are typically based on solving
multiple pair wise classification problems, each of which will
suffer from the problems illustrated here. But they also apply to
fast event-related designs where careful balancing of the
sequence of events from different classes is required to avoid
spurious performance based on temporal order effects. Only in
a design where the BOLD data used by the classifier are
known to be independent can one use random cross-validation,
and a global permutation test for significance. This may apply
to some slow event-related designs where the time between
measurements is longer than the duration of the HRF. In a
typical MVPA analysis based on folded cross-validation testing,
however, true independence is unlikely. Moreover, we note that
there is ample opportunity in the brain for temporal correlations
on time scales even longer than the HRF – such as those
associated with breathing, head motion, or scanner drift. These
possible confounds require careful attention in future work.

The issues of estimation, significance testing, and
performance comparison apply quite universally to most if not
all multi-voxel classification problems. However, this does not
mean that they affect each of those approaches, or even each
experiment using the same approach, in quantitatively similar
ways. In other words, the issues are potentially present, our
simulations show that they can be large, but the true size of the
effects has to be investigated separately for each data set.
Most importantly, simulations like the ones we performed here
cannot be used as a proxy for a statistical test. For instance, an
experimenter with a 480 time point, two-class experiment and
69% classification performance cannot point to our Figure 2C
and claim that their result is statistically significant. Instead, this
researcher should use LBO-CV, carefully consider all the
possible dependencies of training and tests sets, and perform a
block permutation test to assess significance.

Group level analysis
If one is willing to forego an assessment of significance at

the single subject level, some of the issues discussed here can
be avoided. For instance, as long as an unbiased estimate of
performance has been obtained in each subject (i.e. using
LBO-CV) significance can be tested using a T-test to compare
the mean performance across subjects with chance
performance. We note, however, that this does not resolve the
problems associated with the comparison between areas or
subject groups; inferences about differences in neural
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representations are only valid to the extent that the HRF can be
assumed (or shown) to be the same.

Performance Comparisons
Considerable additional complexities arise when one

considers the presence of true class-related signals; surely the
situation of most interest in experimental research. Our
simulations (Figure 5 and Figure 6) show that a difference in
performance between two regions of interest does not
guarantee a difference in the underlying neural signals; it could
be due to differences in neurovascular coupling that change
temporal (Figure 5) or spatial (Figure 6) correlations. This could
for instance affect comparisons of performance between age
groups, or healthy and diseased brains. A possible solution to
this problem is to measure the HRF or the spatial correlations
separately in the areas or subject groups and explicitly
incorporate this into the analysis. This could help to understand
whether classification performance differences should be
attributed to vascular or neural effects. Of course these
particular considerations also apply to standard analyses
based on single-voxel activation, as pointed out by Logothetis
and Wandell [14].

A comparison between an area that classifies significantly
and one that does not is often made implicitly. Such a
comparison requires a statistical test that directly tests the null
hypothesis of no difference between the two areas [15]. But,
even when that statistical comparison is done correctly, the
interpretation of a performance difference is complicated by the
possible influence of the vasculature. In this context it is also
worth pointing out that little is known about false negatives in
MVPA, i.e. true class-related neural signals that are not
detected by MVPA. Investigating these quantitatively using a
simulation approach is difficult as it requires realistic models of
neural signals and the HRF.

In Figure 6, we show that signal correlations increase
performance. It is important to note that noise correlations can
undo some or all of this, hence final classification performance
will depend in detail on the relative strength (and sign) of noise
and signal correlations. Averbeck et al [16] review these issues
in the context of neural population decoding and provide an

intuitive geometrical interpretation of why signal correlations
generate higher classifier performance. Our simulated spatial
correlations were only intended to illustrate a conceptual point,
using simplistic assumptions about the vasculature. For a more
detailed treatment that focuses on the possible linking between
vasculature and classification, we refer to Gardner [17] and
Kriegeskorte et al [18].

Conclusion

Multi-voxel pattern classification analysis is a powerful tool to
determine whether the BOLD response in a set of brain voxels
contains information that is useful for a particular behavioral
task. The real question of most interest, however, is whether
the neural signals that generate these BOLD responses
contain information. Assessing this is complicated by the
temporal and spatial correlations induced by the hemodynamic
response function, and the overlap among cross-validation
training and test sets. Binomial and Student T tests are
inappropriate tests of significance, and we argue that only a
block-level permutation test should be used. Comparisons of
performance between regions or subjects should be treated
with caution as any difference in spatial or temporal
correlations, such as those introduced by differences in
hemodynamic coupling, can increase classification
performance without any change in the underlying neural
signals.
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