
The surface of the empirical horopter
School of Optometry, University of California at Berkeley,

CA, USAKai M. Schreiber

Department of Psychology, University of Glasgow,
Glasgow, UKJames M. Hillis

UCSF/UC Berkeley Joint Graduate Group in Bioengineering,
University of California at Berkeley,

CA, USAHeather R. Filippini

School of Optometry, University of California at Berkeley,
CA, USAClifton M. Schor

School of Optometry, Psychology, Wills Neuroscience,
University of California at Berkeley, CA, USAMartin S. Banks

The distribution of empirical corresponding points in the two retinas has been well studied along the horizontal and the
vertical meridians, but not in other parts of the visual field. Using an apparent-motion paradigm, we measured the positions
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the Vieth–Müller circle) and the Helmholtz shear of horizontal disparity (backward slant of the vertical horopter) exist
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stimulated points on the retinas and the empirical corresponding points. The optimum surface is a top-back slanted surface
at medium to far distance depending on the observer. The line in the middle of the surface extending away from the
observer comes very close to lying in the plane of the ground as the observer fixates various positions in the ground, a
speculation Helmholtz made that has since been misunderstood.
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Introduction

Retinal correspondence and the horopter

In stereopsis, the visual system must first match points
in the two retinal images that correspond to the same point
in space. The difficulty of solving this matching problem
is highlighted by the fact that for every n points in an
image there are n2 possible matches, which becomes a
very large number with complex stimuli such as random-
element stereograms (Julesz, 1971). One part of the
solution to this problem is the existence of points in the
two retinas with a special physiological relationship: For
each point in one retina, there is a point in the other that
when stimulated gives rise to the same perceived direction
(i.e., the points appear superimposed in visual space).
These pairs, which are called corresponding points, have
special status for binocular vision: (1) matching solutions
between the two eyes’ images are biased toward them

(Brewster, 1844; Prince & Eagle, 2000); (2) the region of
single vision straddles them (Fischer, 1924); and (3) the
precision of depth estimates from disparity is highest for
locations in space that project to those points (Badcock &
Schor, 1985; Blakemore, 1970; Breitmeyer, Julesz, &
Kropfl, 1975; Ogle, 1953; Schumer & Julesz, 1984;
Westheimer, 1982). We measured the locations of corre-
sponding points across the central visual field and used the
measurements to estimate the shape of the surface for
which human stereopsis is best suited. Such information
provides important insight into how stereopsis functions in
the natural environment. It can also be used to design
workstations that maximize visual performance and reduce
viewer fatigue (Ankrum, Hansen, & Nemeth, 1995).
To quantify the locations of corresponding points, one

typically measures the angles between retinal points and
the foveae; we use Helmholtz coordinates to do so (in
Helmholtz coordinates, elevation is assessed relative to
the eye’s horizontal plane and azimuth is assessed in the
elevated plane; Fig. 20.1c, Howard & Rogers, 2002).
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There are two types of corresponding points: geometric
and empirical. Geometric corresponding points are points
with the same coordinates in the two retinas; they are thus
defined mathematically. Empirical corresponding points
are located by experimental measurement, so they are
defined by psychophysical or physiological criteria. Both
types of corresponding points are fixed retinally: geo-
metric points by definition and empirical points by
experimental demonstration (Hillis & Banks, 2001). Much
research has been devoted to determining the positions of
empirical corresponding points along the eyes’ horizontal
or vertical meridians. All have found that empirically
measured corresponding points are not coincident with
geometric corresponding points (Helmholtz, 1925; Hillis
& Banks, 2001; Nakayama, 1977; Ogle, 1950).
The set of locations in space that project onto

corresponding retinal points is the horopter (Helmholtz,
1925; Howard & Rogers, 2002; Tyler, 1991). The geo-
metric horopter is constructed by projecting rays out of
the eyes from pairs of geometric corresponding points and
finding the intersections of those rays; only a subset of
rays yields intersections and the positions of the inter-
sections obviously depend on eye position (Figure 1). The
empirical horopter is constructed by projecting rays from
empirical corresponding points; again only a subset yields
intersections and again the intersection positions depend
on eye position.
The geometric horopter generally contains two parts:

the Vieth–Müller circle (the circle containing the fixation
point and the eyes’ nodal points) and a vertical line that
lies in the head’s mid-sagittal plane and intersects the
Vieth–Müller circle. In fact, the statement that the
geometric horopter is a circle and a vertical line depends
on eye position: The eyes must be fixating such that either
Helmholtz torsional vergence (the difference between the
two eyes’ torsional positions in Helmholtz coordinates) or
horizontal version (the average of their horizontal posi-
tions) are zero; when both are different from zero, the
geometric horopter becomes a spiral (Schreiber, Tweed, &
Schor, 2006).
Empirical corresponding points are usually determined

using a nonius criterion: For a fixed eye position, a point

or line presented to one eye is moved horizontally and/or
vertically until it is perceived in the same direction as a
point or line in the other eye (Ogle, 1932). The resulting
pairs are empirical corresponding points. Relative to
geometric points, empirical points have uncrossed hori-
zontal disparities to the left and right of fixation, so the
empirical horizontal horopter (the part that lies in the
visual plane) is less concave than the Vieth–Müller circle.
This difference with respect to the Vieth–Müller circle is
the Hering–Hillebrand deviation (e.g., Ames, Ogle, &
Gliddon, 1932; Ogle, 1932; Shipley & Rawlings, 1970;
see Equation 1). Because the retinal positions of empirical
corresponding points do not shift with eye movements
(Hillis & Banks, 2001), the Hering–Hillebrand deviation
remains constant when expressed in angular units. How-
ever, the curvature of the empirical horizontal horopter
changes with vergence eye movements because of the
relationship between disparity and distance (Howard &
Rogers, 2002; Ogle, 1950). With decreasing vergence
(increasing distance), it becomes less concave and
eventually becomes convex. Relative to geometric corre-
sponding points, empirical corresponding points near the
vertical meridians of the retinas are sheared horizontally
such that uncrossed disparities are required to stimulate
corresponding points above the fovea and crossed dispar-
ities below, and the magnitude of these disparities
increases linearly with elevation. This vertical gradient
of horizontal disparity has been called the Helmholtz
shear. It causes a top-back slant of the vertical horopter
(Helmholtz, 1925; Nakayama, 1977; Siderov, Harwerth,
& Bedell, 1999; Tyler, 1991). Because of the relationship
between disparity and distance, the slant of the empirical
vertical horopter increases with fixation distance.
Rays from geometric corresponding points that are not

on the horizontal or vertical meridians of the retinas will
generally not intersect. The red and green rays illustrated
in Figure 1 are examples of such non-intersecting rays.
Thus, there is no location in space that could stimulate
such a pair of points. This is true of most pairs of
corresponding points, so as we said earlier the geometric
horopter is generally restricted to a circle and a line.
Likewise, many empirical corresponding points may not

Figure 1. Stereogram showing ray projections for a pair of geometric corresponding points. The eyes are converged at 15-. The green ray
is projected from (j40-, 20-) in the left eye and the red ray from (j40-, 20-) in the right eye. The two rays do not intersect.
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have a real-world horopter if the strict definition of the
horopterVthe intersection of rays from corresponding
pointsVis used. We can, however, relax the definition to
include the points in space that project closest to pairs of
empirical corresponding points, as quantified by the
magnitude of the total disparity angle irrespective of the
retinal direction of this angle (Schreiber et al., 2006). With
this definition, the horopter is a 3D surface for all eye
positions and distributions of corresponding points. We
will use this relaxed definitionVthe minimum-disparity
horopterVto describe the empirical horopter.
The fact that empirically measured corresponding

points are not geometric corresponding points suggests
that the positions of empirical points may be optimized for
a particular surface shape and orientation that is advanta-
geous behaviorally. For example, the combination of the
Hering–Hillebrand deviation near the horizontal meridian
and the Helmholtz shear near the vertical meridian has led
to the speculation that empirical corresponding points are
optimized for a ground plane viewed by a standing observer
(Breitmeyer, Battaglia, & Bridge, 1977; Helmholtz, 1925;
Nakayama, 1977; Tyler, 1991). A similar shear exists in
cats and owls, and the shear magnitudes correlate with
those species’ habitual heights above the ground (Cooper
& Pettigrew, 1979). If the empirical horopter coincides
with the ground plane, we would expect a pattern of
disparities that mimics the back projection of a slanted
plane on the retinas. The horizontal and vertical disparities
of empirical corresponding points throughout the retinas
should both follow this pattern.
Similarly, the distribution of empirical corresponding

points may be optimized for a particular eye position that
is advantageous behaviorally. With natural eye move-
ments (i.e., eye movements that follow Listing’s law or
Listing’s extended law; Mok, Ro, Cadera, Crawford, &
Vilis, 1992; Tweed, 1997; Van Rijn & Van den Berg,
1993), the only pair of fixed retinal points whose
projections will always intersect are the foveae. Therefore,
with empirical corresponding points that are fixed on the
retinas (Hillis & Banks, 2001), there may be only one eye
position for which points in space on the most appropriate
surface (perhaps a top-back slanted plane) come closest to
stimulating empirical points throughout the retinas. We
can express the combination of surface properties and eye
position that comes closest to stimulating empirical
corresponding points by the shape, orientation, and 3D
position of the surface. We will call this the optimum
surface because it is the surface for which the precision of
stereopsis should be highest.
To determine what the optimum surface is, we need to

know the distribution of empirical corresponding points
across the retinas, not just in the horizontal and vertical
meridians, and then we need to find the combination of
binocular eye position and point positions in space that
minimizes the disparity between stimulated retinal points
and empirical corresponding points. To our knowledge,
only two published papers have reported measurements of

corresponding point locations off the horizontal and
vertical meridians: Ledgeway and Rogers (1999) and
Grove, Kaneko, and Ono (2001). Their data suggest that
the Helmholtz shear observed along the vertical meridian
extends to a large portion of the visual field. Their data
also suggest that there is little if any vertical disparity
between corresponding points. They did not, however,
determine the optimum surface. Furthermore, their psy-
chophysical method measured only global components of
disparity between corresponding points (with the excep-
tion of the measurements of horizontal disparities by
Grove et al., 2001). There is also an unpublished manu-
script that made measurements of corresponding point
locations off the major meridians (Owens, Kooi, & Tyler,
1987), but we do not know the details of their method.
We measured the pattern of retinal correspondence over

the central portion of the visual field using a technique
that allowed us to measure global and local variation in
the disparities of corresponding points. We then used
those measurements to find the combination of binocular
eye position and points in space that minimizes the overall
disparity between stimulated points and empirical corre-
sponding points. From this, we derived the optimum
surface.

Methods

Observers

There were three observers ranging in age from 23 to
30 years. All had normal stereopsis and retinal corre-
spondence assessed by the Randot stereotest. HRF has a
modest intermittent exophoria (8-) and received eye
exercises to enhance convergence amplitudes in childhood
(age 8–10 years). Her correspondence was assessed and
found to be normal using the Hering–Bielschowsky after-
image test; her eye alignment was assessed and found to be
normal using the unilateral cover test at 40 and 600 cm.
Two of the observers were authors; PRM was unaware of
the specific experimental hypotheses. The experimental
measurements were quite difficult, so all observers had
extensive practice before beginning formal testing.

Apparatus

The stimuli were displayed on a haploscope with two
mirrors and two CRTs (one mirror and CRT for each eye;
for details, see Backus, Banks, van Ee, & Crowell, 1999).
Each mirror and CRT was attached to an arm that rotated
about a vertical axis. Observers were positioned with a
bite bar so that the vertical rotation axes of their eyes were
co-linear with the rotation axes of the haploscope arms.
With this arrangement, the line of sight from each eye was
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co-linear with the central surface normal of the corre-
sponding CRT. To position the observer’s eyes relative to
the bite-bar mount, we used a sighting device described by
Hillis and Banks (2001). The optical distance from the eye
centers to the CRTs was 39 cm. The arms of the
haploscope were rotated such that the vergence distance
was 40 cm; this required adjusting the distance between
the rotation axes of the two arms so that they were an
interocular distance apart. Because the vergence and the
optical distances were so similar, there was very little
conflict between the stimuli to vergence and accommoda-
tion (Judge & Miles, 1985).

Stimulus and procedure

Several methodological challenges had to be overcome
for the psychophysical measurements. Variation in eye
position from one trial to the next would cause undue
variability in the observers’ settings, so one challenge was
to hold eye position as constant as possible across trials.
To help achieve this, we presented a fixation target that
allowed observers to assess their own fixation accuracy
before initiating a trial. The fixation target was composed
of several line segments in a radial pattern (Figure 2). The
central part of the target was a three-segment radial
pattern presented binocularly; the segments were 0.34 cm
(0.5-) long. Observers were instructed to fixate the center
of this pattern. The eccentric part of the fixation target was
a radial pattern of segments each abutting the end of a
segment in the central binocular part of the target; these
segments were also each 0.5- long and were presented
dichoptically, three to the left eye and three to the right.
Observers were instructed to keep the radial segments
aligned and in particular to initiate stimulus presentations
only when they were aligned. Empirical corresponding
points are fixed retinally (Hillis & Banks, 2001), so the
dichoptic segments would have appeared unaligned if the
observer was not fixating accurately.
While torsion is normally determined by the binocular

extension of Listing’s law during stable fixation, small
fluctuations occur around the prescribed value (Van Rijn,
Van der Steen, & Collewijn, 1994). To help keep the eyes
torsionally aligned, we presented eight binocular line seg-
ments in between each stimulus presentation. Each segment
was 13 cm (È8-) long; segment orientations were radial with
respect to the fixation target (Figure 2). Observers were
encouraged to maintain fusion of these segments, which
required the torsional vergence to be close to 0-.
The test stimuli were 15-mm vertical or horizontal

dichoptic line segments (corresponding to È0.22-). They
were anti-aliased so we were able to adjust their positions
with an accuracy of 0.3 arcmin or better (Backus et al.,
1999). The vertical segments were used for measuring
horizontal disparities in empirical corresponding points and
the horizontal segments for measuring vertical disparities.
The stimuli were presented at seven eccentricities from

fixation (0-, T2-, T4-, and T8-; 0- was used to measure
fixation disparity) along one of eight radial directions (0-,
22.5-, 45-, 67.5-, 90-, 112.5-, 135-, and 157.5-, where 0- is
horizontal). The seven possible stimulus locations are
shown in Figure 2 for the 45- direction. Two limbs of
the radial background pattern were extinguished during
the presentation of the test stimuli if they overlapped the
position of the test stimulus.
In each experimental session, we measured horizontal

and vertical disparities between corresponding points for
seven eccentricities (including fixation) along one radial
meridian. We first measured horizontal disparities for all
seven eccentricities. On each trial, the stimuli could appear
at any one of the seven eccentricities. The random
selection of eccentricity was important because it pre-
vented observers from making anticipatory eye move-
ments toward the test location. On each trial, dichoptic
vertical line segments, one in the left eye and one in the
right, were flashed sequentially for 55 ms each, separated
by 70 ms. The two segments were offset horizontally (in
screen coordinates) in opposite directions from the test
location. The eye stimulated first was selected randomly.
This sequential dichoptic presentation yielded apparent
horizontal motion unless the segments stimulated corre-
sponding points (Flom, 1980; Ledgeway & Rogers, 1999;

Figure 2. Stimulus schematic showing (1) the central fixation
target, a dichoptic star; (2) the background fixation target; (3) the
stimulus geometry for determination of horizontal disparities of
empirical corresponding points; and (4) the stimulus geometry for
determination of vertical disparities. (5) The inset shows the
stimulus used to measure torsional vergence. Red components
were seen by the right eye, green by the left eye. See Methods
section for full stimulus description.
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Nakayama, 1977). Observers indicated the direction of
apparent motion from the two flashes. The offsets were
varied trial by trial with a 1-up/1-down adaptive staircase,
with six step-size reductions after each of the first six
reversals of staircase direction. Each staircase terminated
after 12 reversals. The ending step sizes were 0.3 arcmin
for 0- eccentricity and 0.5 arcmin for the others. Seven
staircasesVone for each of the eccentricities along the
chosen meridianVwere interleaved. When each staircase
ended, we estimated the horizontal disparity associated
with each tested eccentricity by fitting the data with a
cumulative Gaussian using a maximum-likelihood crite-
rion (Wichmann & Hill, 2001). The estimated disparity at
each eccentricity was the mean of the best-fitting
cumulative Gaussian. These horizontal-disparity estimates
were then used to position the horizontal dichoptic lines
used to measure vertical disparities associated with
corresponding points.
We used the same task to measure vertical disparities

except that observers now indicated whether apparent
motion was up or down. Seven interleaved staircases were
used to vary the vertical disparity at each eccentricity
along the chosen meridian. These vertical-disparity meas-
urements yielded the vertical locations of empirical
corresponding points. Once the horizontal and the vertical
locations were estimated, the observer should have
perceived no apparent motion when targets were flashed
at the appropriate locations in the two eyes.
Throughout the paper, horizontal disparity refers to the

difference in the azimuths of left- and right-eye positions
expressed in Helmholtz coordinates; vertical disparity
refers to the difference in the Helmholtz elevations. We
also define rightward (i.e., clockwise) horizontal angles as
positive because Ogle (1950) used that sign convention.
We define upward vertical angles as positive.
The psychophysical judgments were very difficult,

particularly at the 8- eccentricity, but after several
modifications of the time, the segment length, and the
other details, we were able to obtain repeatable settings
for all 49 of the tested positions in the visual field.

Subjective measures of eye position

Despite the instructions and fixation aids, there is no
assurance that observers fixated the central target per-
fectly; that is, that the horizontal, the vertical, and the
torsional vergence was zero. With the physical constraints
of the haploscope, we were unable to measure eye
position objectively with an eye-movement recorder. So
to measure any residual fixation errors, we measured
vergence subjectively during the course of the experiment
and used the measurements to correct the corresponding-
point data. Previous work has shown that the nonius
technique we used yields accurate estimates of horizontal,
vertical, and torsional vergence (Hebbard, 1962; Howard,
Ohmi, & Sun, 1993; Shipley & Rawlings, 1970).

The stimuli for measuring vergence were varied
according to 1-up/1-down staircases; this is one of the
aforementioned seven staircases. For measurements of
horizontal vergence, dichoptic vertical segments were
presented at 0- eccentricity and their relative positions
were varied horizontally. On each trial, observers indi-
cated which segment appeared farther to the right. For
measurements of vertical vergence, horizontal segments
were presented and their relative positions were varied
vertically. Observers indicated which segment appeared
higher in the visual field. For measurements of torsional
vergence, two 2-cm line segments were presented, one
0.3 cm above the fixation target and one 0.3 cm below.
Observers indicated whether the upper segment was
rotated clockwise or counterclockwise relative to the
lower. We used these dichoptic alignment tasks rather
than the apparent-motion task we used at the other
eccentricities because observers were able to make more
alignment judgments near fixation.
The trials for measuring horizontal, vertical, and tor-

sional vergence were randomly interspersed with the other
measurements, so eye alignment during the vergence
measurements should have been the same as during the
corresponding-point measurements. The data were used to
generate psychometric functions fit by cumulative Gaussians.
We used the objective disparities (or orientations) between
the segments that were perceptually aligned (or parallel to
one another) to estimate the horizontal, the vertical, and the
torsional vergence. We then used the estimated vergence
angles to correct the corresponding-point data. We had to
assume that vergence was constant across sessions; this
appeared to be a valid assumption because observer
responses did not appear to drift during the course of a
session and were similar between sessions.
There is no known procedure for estimating torsional

version from psychophysical measurements, so we did not
correct the data for this. Torsional version drifts during
extended fixation, but its standard deviation is only È0.3-
(Van Rijn et al., 1994). Furthermore, torsional version in a
haploscope affects each eye’s projection equally, so a
versional change does not affect the angular difference in
projection; rather it affects the location of the eyes’ targets
equally. Assuming that the pattern of correspondence does
not change significantly with small variations in retinal
position (torsion of 0.3- produces a retinal shift of È0.04-
at the largest eccentricity we tested), torsional version will
have no appreciable effect on our data.

Results

Predicted patterns

Before presenting our results, it is useful to consider
the expected pattern of empirical corresponding points
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under different assumptions. First, suppose these points
were located at geometric corresponding points on the
retinas. Under that assumption, the horizontal and the
vertical disparity (the 2D disparity) between empirical
corresponding points would be zero everywhere. What
combination of eye position and surface orientation and
shape would stimulate such points? For a point in space
to stimulate the same horizontal positions in the two
eyes, it must lie on the Vieth–Müller circle or on the
cylinder that is the vertical extension of the circle (in
Fick coordinates). Thus, we can stimulate retinal points
in the same horizontal positions by presenting points on
the cylinder above and below fixation for a variety of
viewing distances. To understand where points in space
must be to stimulate the same vertical positions in the
two eyes, it is helpful to consider epipolar geometry
(Fig. 20.2 of Howard & Rogers, 2002). A point in space
and the nodal points of the two eyes define a plane: the
epipolar plane. The intersection of the epipolar plane
with the two retinas produces a pair of epipolar lines,
one in each eye. Any point in the epipolar plane must
project to corresponding epipolar lines in the two retinas.
If the eyes are in parallel gaze (i.e., fixating at infinity),
epipolar lines are in the same positions in the two eyes.
If the eyes are converged to fixate at a finite distance,
epipolar lines above and below fixation rotate in opposite
directions in the two eyes. Thus, the only way for an
extended surface to stimulate the same vertical positions
in the two eyes above and below the foveae is to have
the eyes in parallel gaze, and with the eyes in that
position, the Vieth–Müller circle has an infinite radius.
In other words, the only way for points on a surface to
stimulate geometric corresponding points in the two eyes
is for the surface to have an infinite distance and for the
eyes to fixate at infinity.
As we have seen, geometric corresponding points

cannot be stimulated by a real surface at a finite distance.
It is therefore interesting to consider how empirical
corresponding points would have to differ from geometric
points so that a near surface could stimulate those points.
Suppose that empirical points were located so that they
were stimulated by a frontoparallel plane at a distance of
12 cm. Figure 3A shows that surface with the eyes fixating
in the middle. Figure 3B is a plot of the pattern of points
in the two retinas that would be stimulated in this case.
The origin represents the foveae. Azimuth and elevation
are the Helmholtz coordinates of different locations in the
visual field. The green and the red points represent the
positions of empirical corresponding points in the left and
right eyes, respectively. There would be uncrossed
horizontal disparities left and right of the vertical meridian
and non-zero vertical disparities at all non-meridian
locations (the absolute values of the Helmholtz elevations
would be greater for the left eye’s points in the left visual
field and for the right eye’s points in the right field). As
we said earlier, empirical corresponding points near the
vertical meridian of the retinas are shifted horizontally

causing the slant of the vertical horopter (Helmholtz,
1925). If a slanted plane at 12 cm (Figure 3C) stimulated
corresponding points, we would observe a pattern with a
vertical gradient of horizontal disparity (the Helmholtz
shear) as shown in Figure 3D. As in Figure 3B, there
would be uncrossed horizontal disparities left and right of
fixation and non-zero vertical disparities for all non-
meridian locations. There would also be uncrossed
horizontal disparities above fixation and crossed dispar-
ities below.
Figures 4B and 4D plot the expected Hering–Hillebrand

deviation, Helmholtz shear, and the horizontal gradient of
vertical disparity (which we will call the vertical-disparity
shear) for the corresponding-point patterns in Figures 3B
and 3D. Notice the change in the Helmholtz shear as the
optimum surface becomes slanted.

Empirical corresponding points

Figure 5 shows the 49 pairs of empirical corresponding
points we measured in our observers. The Hering–
Hillebrand deviation is evident along the horizontal
meridian in observers PRM and KMS: corresponding
points left and right of the foveae have uncrossed
disparities. In observer HRF, the Hering–Hillebrand
deviation was essentially zero. The Helmholtz shear is
evident along the vertical meridian in all three observers:
uncrossed disparities above the fovea and crossed dispar-
ities below. It is difficult, however, to see if the Hering–
Hillebrand deviation and Helmholtz shear persist in the
remainder of the visual field. It is also difficult to see if
there is any systematic variation of vertical disparity across
the visual field. To determine if the Hering–Hillebrand
deviation and Helmholtz shear generalized spatially and if
there is a clear pattern of vertical disparity, we transformed
the data from polar to Cartesian coordinates and developed
summary statistics from those transformed data. We used
Cartesian coordinates because the Hering–Hillebrand
deviation and Helmholtz shear could be more mean-
ingfully expressed in such coordinates. To make the
polar-Cartesian transformation, we used an interpolation
algorithm. We fit the six horizontal and vertical disparities
along each radial meridian separately with second-order
functions: Ae2 + Be, where e is eccentricity along the
meridian and A and B are constants. We did not have a
constant term in the fitting equation in order to constrain
the fits to have a zero offset at their midpoints and thereby
eliminate possible discontinuities at the center where the
meridians all meet. The polar-Cartesian conversion
required interpolation for locations in the Cartesian grid
where we did not actually collect data. The interpolated
disparity was the weighted average of measured dispar-
ities at corresponding eccentricities on the two neighbor-
ing radial meridians. From those disparities in the grid, we
obtained estimates of the Hering–Hillebrand deviation,
Helmholtzshear, andvertical-disparity shear.Werepresented
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the vertical-disparity pattern in the form of a horizontal
gradient because the vertical-disparity pattern of a plane
viewed with symmetrical vergence is well summarized that
way. The results are shown in Figures 6, 7, and 8. To
estimate the error on the parameter fits, we used a
bootstrapping method in which we randomly removed
two points from each meridional data set before perform-
ing the fits described above. With the remaining five
points (including the fixation point) on each meridian, we
ran the parameter-fitting routine. We did this 50 times
deriving an estimate of the Hering–Hillebrand deviation as
a function of elevation, Helmholtz shear as a function of
azimuth, and vertical-disparity shear as a function of
elevation each time. We then used those 50 estimates to
estimate the standard deviations of the fitted parameters.

We first determined the Hering–Hillebrand deviation in
iso-elevation rows in Helmholtz coordinates. We started
with Ogle’s (1950) formula for the Hering–Hillebrandt
deviation parameter H, based on relative horizontal
disparities in the left and the right eyes, !L and !R, and
the effective image magnification in the right eye relative
to the left, R:

H ¼ cot!Lj R cot!R: ð1Þ

From this, we obtain

!R ¼ tanj1 R tan!L
1jH tan!L

� �
: ð2Þ

Figure 3. Predicted pattern of empirical corresponding points when the optimum surface is a plane. (A) The optimum surface is a
frontoparallel plane at a distance of 12 cm. The eyes are fixated in the middle of the plane. (B) The pattern of corresponding points at the
retina that would ideally be associated with that optimum surface. The foveae are superimposed in the middle of the panel. Left-eye points
are represented by green symbols and right-eye points by red symbols. The horizontal position represents azimuth in Helmholtz
coordinates; vertical position represents Helmholtz elevation. (C) The optimum surface is a top-back slanted plane at a distance of 12 cm.
(D) The pattern of corresponding points at the retina, again in Helmholtz coordinates, that would ideally be associated with that optimum
surface.
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We can then describe the horizontal disparities D as the
difference between !L and !R minus an elevation-specific
disparity offset D0 that we used to offset the effect of the
Helmholtz shear:

D ¼ !Lj tanj1 R tan!L
1jH tan!L

� �
jD0: ð3Þ

We found the values of D, H, and R that provided the
best least-squares fit to the data. When R = 1 (equal
magnification in the two eyes) and H = D = 0, Equation 3
describes the situation in which empirical and geometric
corresponding points are the same; the empirical horopter
for the horizontal meridian then becomes the Vieth–
Müller circle. For H 9 0, the horopter is less concave. We
needed the parameter D0 because the equation for the
Hering–Hillebrand deviation assumes that the disparity is
zero at an azimuth of zero (i.e., that D = 0 for ! = 0).
Because of the Helmholtz shear, this assumption is false
for all non-zero elevations.
We found that R did not vary with elevation, but that it

was very slightly greater than 1 for all three subjects. The

slight deviation from 1 could have been caused by a very
small difference in the distances of the left and right CRTs
to their respective eyes.
The best H values are plotted in Figure 6. At an

elevation of zero (i.e., on the horizontal meridian), H is
+0.25 for observer PRM, +0.36 for KMS, and j0.11 for
HRF. H is generally +0.10 to +0.30 in observers with
normal binocular vision (Ogle, 1950), so the data from
two of our observers are consistent with previous
measurements. Of greatest interest, however, is the fact
that H does not vary systematically with elevation. This
result is consistent with the conclusions of Grove et al.
(2001) and Ledgeway and Rogers (1999).
We also examined how the Helmholtz shear varies with

azimuth. At each azimuth, we quantified the shear as the
angle formed between a line fit through the left eye’s
corresponding points at different elevations for a given
azimuth and a line fit through the right eye’s points at that
same azimuth. The shear angle as a function of azimuth is
plotted in Figure 7. At an azimuth of zero, it is 2.8- for
observer PRM, 6.1- for KMS, and 3.6- for HRF. Those
values are consistent with previously reported values

Figure 4. Predicted patterns of empirical corresponding points for an optimal planar surface at a distance of 12 cm. (A) The two viewing
situations in Figure 3B. The Hering–Hillebrand deviation as a function of elevation (red for the frontoparallel plane, green for the slanted
plane). The deviation is the value H in Equation 3 that provides the best fit to the horizontal disparity values at each elevation. (C) The
vertical gradient of horizontal disparity (Helmholtz shear) as a function of azimuth. The shear is the angle formed between a line fit through
the left eye’s corresponding points at different azimuths and a line fit through the right eye’s points at those same azimuths. (D) Horizontal
gradient of vertical disparity as a function of elevation; the vertical-disparity shear. The shear is the angle formed between a line fit through
the left eye points at different elevations and a line fit through the right eye’s points at the same elevations.
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(Nakayama, 1977; Siderov et al., 1999). Interestingly, the
shear angle varies with azimuth: It is largest at zero and
decreases to the left and right of that azimuth. This means
that the inclination of the horopter is greatest in the head’s
mid-sagittal plane. A similar shear pattern was reported by
Grove et al. (2001) and Owens et al. (1987).
We also examined how the vertical disparities of

empirical corresponding points vary across the visual
field. We quantified the vertical-disparity shear at each
elevation in essentially the same fashion that we quanti-
fied the horizontal-disparity shear at each azimuth. We fit
a line through the left eye’s corresponding points at each
elevation and a line through the right eye’s points at the
same elevations. The shear angle as a function of
elevation is plotted in Figure 8. The shear angle was
close to 0- on average, and there was no systematic
change with elevation. We conclude that the vertical
disparities associated with empirical corresponding points
are È0-. Recall that one expects the shear angle to
increase with increasing elevation if corresponding points
are optimized for near viewing (Figure 4D).

Optimum surface

Having measured the retinal coordinates of empirical
corresponding points for the central visual field, we turned
to the problem of finding the optimum surface in space.
Each corresponding-point pair generates two rays: one
from the point on the left retina through the optical center
of the eye into space and one from the point on the right
retina into space. From our experimental measurements,
we have 48 pairs of such rays. Most pairs of rays will not
intersect in space, so in a simulation we moved the eyes
and thereby moved the rays to find the binocular eye
position for which the rays come closest to intersecting.
To do this, we first found for a given eye position the
point on each eye’s projection ray that projects closest to
the origin of the other eye’s ray. We then found the point
on the line connecting these two points in space that has
the same angular distance from the two rays, as seen from
their respective eyes. This procedure finds the point in
space that projects closest in angular distance to a given
pair of corresponding points. The left and the right eye’s
2D disparity vectors will have the same length, but not the
same direction. We defined the length of these 2D
disparity vectors as the residual disparity for that pair of
corresponding points. This procedure differs slightly from
that used in Schreiber et al. (2006): In that paper, the
points on the rays were defined not by minimal angular
distance as seen from the retina, but by the minimal
distance between the rays in space.
We found the binocular eye position that minimized the

root mean square of residual disparities across all pairs of
empirical corresponding points. In varying eye position,
we held horizontal, vertical, and torsional version constant
at 0-, so the simulated gaze was straight ahead. We varied
horizontal, vertical, and torsional vergence simultaneously

Figure 5. Empirical correspondence patterns for our three
observers. The retinal locations are plotted in Helmholtz coor-
dinates with the two retinas superimposed at the foveae and
removing horizontal, vertical, and torsional eye-position offsets
(see Methods). Left-eye points are green and right-eye points are
red. Positive azimuth and elevation angles denote rightward and
upward directions in visual space, respectively. Error bars are the
black segments in the lower left of each panel. They are the
average standard deviations of the probability distribution func-
tions for the individual disparities at each eccentricity (T2-, 4-, and
8-), separate values for the horizontal and the vertical settings.
They have been magnified by a factor of four for better visibility.
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to find the combination that minimized the rms of residual
disparity. The best values for the vertical and the torsional
vergence were readily obtained because small variations
in vergence had significant effects on the residual
disparity. Small variations in the horizontal vergence had
a less significant effect, but there were still best values.
The best binocular eye position for each observer is

provided in Table 1. The distances at which residual
disparity was minimized were 155 cm for PRM, 279 cm
for KMS, and 90 cm for HRF. The fact that the best eye
position was fairly distant in all observers is because the
vertical disparity of corresponding points was generally
È0-. Because the distances were relatively far, we
conclude that empirical corresponding points are posi-
tioned for medium-range to distant viewing, and not for
near viewing. Grove et al. (2001) reached a similar
conclusion.

The optimum surfaces are represented by the red grids
in Movie 1. Each grid intersection is the position in space
that minimized the disparity of stimulated points relative to
a pair of empirical corresponding points. In all three cases,
the optimum surface is reasonably smooth and is slanted
top-back. For observers PRM and KMS, the optimum
surface is nearly planar for the eye position shown. For
observer HRF, the surface is somewhat concave.

Discussion

Comparison with previous results

As we said earlier, two published studies measured
empirical corresponding points across the visual field:

Figure 6. Best-fitting values for the Hering–Hillebrand deviation (H) as a function of elevation. The black curve is the estimated H at
different elevations. The red curves represent standard deviations calculated from bootstrapping with 50 reduced data sets (Manly, 1997).

Figure 7. Best-fitting values for the Helmholtz shear (vertical gradient of horizontal disparity) as a function of azimuth. The black curves are
the estimated shear at different azimuths. The red curves represent standard deviations calculated from bootstrapping (Manly, 1997).
When we analyzed our data to see how the Hering–Hillebrand deviation and the Helmholtz shear generalize across the retina, we did so
independently for those two disparity patterns by fitting the disparities across iso-elevation and iso-azimuth lines, respectively. While this
provides reasonable descriptions of the pattern of retinal disparities, the two descriptions are not actually independent. Specifying both a
Helmholtz shear value for all azimuths and the Hering–Hillebrand deviation for the visual plane (elevation zero) provides a unique value of
horizontal disparity everywhere on the retina, thereby determining the values of the Hering–Hillebrand deviation at other elevations. The
reverse is true when elevation-dependent Hering–Hillebrand deviations are specified together with the shear angle for the vertical
meridians; this determines the shear angles for all other azimuths. Thus, Helmholtz shear and Hering–Hillebrand deviation are not
independent indices of the pattern of correspondence. They are nonetheless useful descriptions of the disparity pattern across the visual
field.
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Grove et al. (2001) and Ledgeway and Rogers (1999). We
next compare their results to ours.

Ledgeway and Rogers (1999)

To measure horizontal disparities associated with
empirical corresponding points, Ledgeway and Rogers’
(1999) observers nulled the apparent motion of two
dichoptic pairs of dots: One pair was 21- above the
horizontal meridian and the other was 21- below. The dot
pairs were presented at azimuths from 0- to T16-. The
disparity adjustments were equal and opposite for the
pairs above and below the horizontal meridian. To
measure the vertical disparity between corresponding
points, observers adjusted the vertical disparity of two
dichoptic dot pairs, one 21- to the left of the vertical
meridian and the other 21- to the right. The pairs were
presented at elevations from 0- to T16-, and adjustments
were again equal and opposite in the pairs left and right of
the vertical meridian.

Ledgeway and Rogers’ (1999) method allowed them to
measure horizontal and vertical disparities between corre-
sponding points at an eccentricity of 21-, more than
double the eccentricity that observers could manage in our
task. However, their method assumes that horizontal and
vertical disparities between corresponding points are
mirror symmetric about the horizontal and the vertical
meridians, respectively. As a consequence, their measure-
ments only provide information about mirror-symmetric
horizontal- and vertical-disparity shears between corre-
sponding points. They cannot provide information about
non-symmetric changes in those disparities and cannot
provide information about the Hering–Hillebrand devia-
tion (the variation of horizontal disparity with azimuth).
Our measurements add to theirs because our method did
not assume that the disparities between corresponding
points are mirror symmetric. Thus, our measurements
reveal the disparities at each visual-field location inde-
pendently from disparities at other locations. Moreover,
we measured disparities between corresponding points for
locations closer to the foveae.
In general, our results agree with Ledgeway and

Rogers’ (1999). Like us, they found that the horizontal-
disparity shear associated with empirical corresponding
points was 4–6- for all horizontal eccentricities. One
observer (BJR) showed the same effect of azimuth that we
observedVgreater shear at 0- than at other azimuthsVbut
the other two observers did not exhibit this effect. With
respect to vertical disparity, Ledgeway and Rogers
showed that the vertical-disparity shear between empirical
corresponding points was È0- for all elevations, and this
is consistent with our observations (Figure 4D).

Grove et al. (2001)

Grove and colleagues (2001) also measured the posi-
tions of empirical corresponding points across the visual

Horizontal
vergence
(deg)

Vertical
vergence
(deg)

Torsional
vergence
(deg)

Distance
(cm)

PRM 2.40 0.01 j0.20 155
KMS 1.33 0.06 j0.53 279
HRF 4.15 0.00 j0.51 90

Table 1. Optimal binocular eye position for each observer. The
values are the horizontal vergence, the vertical vergence, and
the torsional vergence in Helmholtz coordinates that minimized
the root mean square of residual disparity across the 49 pairs of
empirical corresponding points. The distance corresponding to the
horizontal vergence assuming an interocular distance of 6.4 cm.

Figure 8. Best-fitting values for the vertical-disparity shear as a function of elevation. The black curve is the estimated horizontal gradient
of vertical disparity (the vertical-disparity shear) at different elevations. If corresponding points were at identical locations in the two eyes,
the data would be horizontal lines at a shear of 0- (Figure 4D). If corresponding points were positioned appropriately for a near surface,
the data would be positively sloped lines (Figure 4D). The red curves represent standard deviations calculated from bootstrapping (Manly,
1997).
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Movie 1. The optimum surfaces for observers PRM, KMS, and HRF. The axes are in centimeters. Blue lines represent lines of sight. The
red grid represents the optimal surface for that eye position. Each grid intersection is the position in space that minimizes the disparity of
stimulated points with respect to one pair of empirical corresponding points. (A) Observer PRM. (B) KMS. (C) HRF. The surfaces for PRM
and HRF are shown at their optimum eye positions. The optimum vergence distance for KMS was 279 centimeters, and at that distance
the top part of the surface becomes quite distorted rendering the plot unintelligible. Therefore, we placed his optimum surface at 80 cm to
aid interpretation.
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field. Unlike Ledgeway and Rogers (1999), their method
provided measurements of local horizontal disparities
associated with corresponding points independent of other
test locations. However, they used Ledgeway and Rogers’

method to measure vertical disparities, so again they could
only determine the mirror-symmetric vertical shear asso-
ciated with corresponding points. We subjected their data
to the same analysis as ours. In particular, we determined
H, the Helmholtz shear, and vertical-disparity shear for
two of their three observers (the third had too few
measured points). The upper row of Figure 9 plots the
best-fitting H as a function of elevation. Their H values
were similar to ours exhibiting a tendency toward positive
values and no systematic change with elevation. The
middle row of Figure 9 plots the best-fitting Helmholtz
shear as a function of azimuth. They observed the same
effect we did: larger shear disparities at 0- than at other
azimuths. The lower row plots vertical-disparity shear as a
function of elevation. There was a small variation in shear
with elevation: smaller values at zero elevation than at
others. That pattern is not adaptive for any viewing
distance (see Figure 4D). The vertical-disparity shear they
observed was quite small, so their observations were
similar to ours (Figure 8): they showed no substantial
variation of vertical disparity with elevation.
In summary, the results from Grove et al. (2001) and

Ledgeway and Rogers (1999) are generally consistent
with ours. They observed, as we did, that the Helmholtz
shear occurs at all azimuths. Like us, they also observed
that vertical-disparity shear at different elevations is small
and is thereby consistent with a fairly distant optimum
surface. Grove et al. also observed, as we did, that the
Hering–Hillebrand deviation occurs at all elevations.

The vertical horopter

Helmholtz (1925) claimed that the empirical vertical
horopter is a top-back slanted line in the mid-sagittal
plane. The slant he said is due to horizontal shear of
corresponding retinal points near the eyes’ vertical
meridians. More recent work, including ours (Figure 7),
has confirmed both claims (Cooper & Pettigrew, 1979;
Grove et al., 2001; Ledgeway & Rogers, 1999;
Nakayama, 1977; Siderov et al., 1999). Helmholtz
proposed that the slant of the vertical horopter had
adaptive value. In particular, he claimed that the horizon-
tal shear was close to the value required for a standing
observer to have the empirical horopter in the plane of the
ground. We believe his proposal has been misunderstood
in the intervening years. Here we will describe the
misunderstanding and then what we believe he actually
proposed.
Figure 10 shows the viewing situation when an upright

observer gazes at infinity in a direction parallel to the
ground plane. Corresponding retinal points near the
vertical meridians are rotated about the line of sight by
E/2 in the left eye and jE/2 in the right eye, so the left-
right difference is E. When E is positive, as it usually is,
we will refer to this correspondence shift as extorsion. The
projections of the extorted retinal meridians through the

Figure 9. Best-fitting values for the data in Grove et al. (2001). The
data from subjects HK and PG are in the left and the right
columns, respectively. Upper row: Hering–Hillebrand deviation (H)
as a function of elevation. Middle row: Helmholtz shear as a
function of azimuth. Bottom row: vertical-disparity shear as a
function of elevation. The data were obtained from Figure 8 of
Grove et al. (2001); there were too few measurements from
observer NU to run our analysis. To make the disparities in their
figure more visible, Grove et al. doubled their magnitudes
horizontally and vertically (Grove, personal communication,
2007); we took this magnification into account when analyzing
their data.
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centers of the eyes are extorted planes. The two planes
intersect in a line beneath the observer when E is positive
and in a line above when E is negative. That line of
intersection is the empirical vertical horopter. With the
eyes gazing parallel to the ground at an infinite distance,
the vertical horopter is parallel to the ground and its
elevation relative to the eyes is

e ¼ ji

2 tan ðE=2Þ ; ð4Þ

where i is the interocular distance. This result was
described by Cooper and Pettigrew (1979, their Equation 1),
Helmholtz (1925), Howard and Rogers (2002, chap. 15,
their Equation 9), and others. If the elevation corresponds

to the observer’s eye height, the empirical horopter lies in
the ground with the eyes in parallel gaze. This arrange-
ment would be advantageous because it causes the region
of single vision and best stereopsis to coincide with the
predominant environmental surface. The value of E that
places the horopter in the ground is

Ecrit ¼ 2 tanj1ði=2hÞ; ð5Þ

where h is eye height. For heights and interocular
distances that are common for humans (h = 160 cm; i =
6.5 cm), Ecrit is 2.32-, a value that is reasonably consistent
with empirical observation (Grove et al., 2001; Helmholtz,
1925; Nakayama, 1977; our data in Figure 7). Helmholtz
described this result:

Figure 10. The viewing situation. A standing viewer with the head
upright. The black lines indicate the visual axes of the eyes with
gaze at an infinite distance and in a direction parallel to the ground.
The green and red circles in the eyes represent the extorted
corresponding meridians. The black planes are the projections of
the vertical meridians through the centers of the eyes. When the
meridians are extorted by E, the planes are also extorted by E

when the eyes are in parallel gaze at infinity. The brown line is the
intersection of the extorted planes; this is the empirical vertical
horopter. The blue lines are the visual axes when the viewer
fixates a near point at the intersection of the extorted planes. If the
eyes’ axes of rotation for getting from infinite to near and
downward gaze are perpendicular to the great circles of the
extorted meridians in the respective eyes, the extorted planes will
remain stationary in head-centric coordinates.

Figure 11. Elevation of the vertical horopter as it crosses under the
eyes. The height of the horopter relative to the eyes is plotted as a
function of fixation distance. The observer is fixating in the mid-
sagittal plane in a direction parallel to the ground. For an observer
with an eye height of 160 cm and interocular distance of 6.5 cm,
the shear E that places the horopter in the ground at long
distances is 2.32- (Equation 5). The red curve shows the
elevation predicted by Equation 4, which does not take into
account the consequences of changes in horizontal vergence.
The equation predicts that the horopters for different fixation
distance intersect at a point: the observer’s feet. The blue curve
shows the elevation predicted by Equation 6, which does take
horizontal vergence into account. The horopters for different
fixation distances do not intersect in a point underneath the eyes.
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“In one single instance the horopter is a surface,
which in fact is a plane; and that is when the point of
fixation is in the median plane and at an infinite
distance, and the retinal horizons, as is usually the
case or practically so at any rate if the eyes are
normal, are both in the visual plane. Then this
horopter-plane will be parallel to the visual plane,
its distance from the latter depending on the amount
of divergence of the apparently vertical meridians of
the visual globes of the two eyes; that is, it will
contain the line of intersection of these two median
planes and will usually be practically the same as the
horizontal plane on which the observer is standing,
provided his eyes are normal and directed straight
toward the horizon” (p. 424).

Since Helmholtz’s proposal, several authors have
considered what happens when the eyes converge to
closer distances with gaze still parallel to the ground
(Cooper & Pettigrew, 1979; Nakayama, 1977, 1983;
Tyler, 1991; Tyler & Scott, 1979). Because of the
relationship between disparity and distance, the slant of
the vertical horopter decreases with decreasing fixation
distance. These authors argued from Equation 5 that when
E is constant and equal to Ecrit, the slant of the empirical
vertical horopter varies with fixation distance such that it
always runs through a point at the observer’s feet. This
claim, which has been attributed to Helmholtz, is not
exactly correct. To see this, reconsider Figure 10. As the
eyes converge while looking parallel to the ground, they
rotate about vertical axes. The extorted planes contain the
fixation axes, so the planes rotate with the eyes (not shown
in the figure). As a consequence, the angle between the
planes changes; it is no longer E (which is a retinal entity).
The elevation of the point on the horopter directly under
the eyes becomes:

e ¼ ji cosð2=2Þ
2 tanðE=2Þ ; ð6Þ

where 2 is the horizontal vergence, the angle between the
lines of sight. (To see this, note that the planes rotate
inward when the eyes converge. The point on the horopter
directly under the eyes was rotated there from a position at
coordinates (sin(2/2)(i/2), cos(2/2)(i/2)) under parallel
gaze. The elevation of points on the black planes in
Figure 10 changes linearly from ji/2tan(E/2) to 0 over a
horizontal distance of i/2. Equation 6 follows directly.
Thus, for a fixed E, the elevation at which the vertical
horopter crosses under the observer depends on fixation
distance, an observation that is inconsistent with several
figures in the literature (e.g., Fig. 10 in Cooper &
Pettigrew, 1979; Fig. 15.29 in Howard & Rogers, 2002;
Fig. 5 in Nakayama, 1977; Fig. 16.9 in Nakayama, 1983).
Figure 11 shows the variation of e with fixation distance
when E is constant at Ecrit. The differences between

elevations predicted by Equations 4 and 6 are very small
until the fixation distance becomes less than 50 cm, so the
error in previous work has little practical significance.
We believe, however, that Helmholtz’s proposal about

near fixations was different than the one described by
modern authors. In particular, we think he was consider-
ing the position of the vertical horopter when the observer
fixates in the ground plane rather than along a line at eye
height parallel to the ground (e.g., Fig. 15.29; Howard &
Rogers, 2002). In a brief and somewhat obscure passage,
he said

“Another matter that must be mentioned here is
that, when a person holds his body and head erect and
looks at a point on the floor-plane which is also in the
median plane of the head, the entire floor-plane is not
the horopter in this case, but yet the entire rectilinear
part of the horopter does lie in this plane” (p. 425).

In the context of other text in that section of the book,
we believe Helmholtz was saying the following. For him
the rectilinear part of the horopter was the vertical
horopter. As we noted earlier, he realized that when the
eyes fixate at infinity in a direction parallel to the ground
(Figure 10), there is a value of E that places the empirical
vertical horopter in the ground plane. He was then
considering the eye movements that would take fixation
from infinity to near points in the ground and mid-sagittal
plane; these movements contain a horizontal component
(to converge to a shorter distance) and a vertical
component (to place fixation low enough to hit the
ground). There is an eye movement that would not alter
the head-centric position and orientation of the extorted
planes projected from the sheared vertical meridians and
therefore would keep the horopter in the same head-
centric location: The rotation axis has to be perpendicular
to the tilted meridian in each eye when the eyes are in
primary position. By rotating about that particular axis, an
eye’s line of sight remains in the extorted plane; the eyes
rotate through short angles to look at distant ground points
and through large angles to look at near points. Because
the extorted planes do not move relative to the head, their
intersectionVthe empirical vertical horopterVremains
precisely in the ground. Notice that the required axis is
parallel to the head’s coronal plane, which means that the
movement follows Listing’s law (Figure 10). Although he
was not explicit in the above quotation, we think
Helmholtz was referring to Listing’s movements when
“a person I looks at a point on the floor-plane” because
he described such movements as normal eye movements
throughout this section of the book. The eye movements
considered explicitly by Cooper and Pettigrew (1979) and
implicitly by other modern authors were only horizontal
and did not place fixation in the ground.
We examined Helmholtz’s claim more closely by

investigating how the value of the shear (E) and the type
of binocular eye movement affect the orientation of the
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vertical horopter with respect to the ground. The insets in
Figure 12A illustrate the viewing situation. A standing
viewer with the head upright looks down to place fixation
in the ground at some distance. The slant of the empirical
vertical horopter (short red line segments) depends on the
value of E and the distance to the fixation point. The
horopter is of course in the mid-sagittal plane. The angle
between the empirical horopter and the ground is >, so
when > is zero, the horopter lies in the ground. The upper
two panels of Figure 12 show the relationship between E
and > when eye position follows Listing’s law. The
horopter lies precisely in the ground plane when E = 2.32-

and lies close to the ground when E is between 1.5- and
6-. The value of E measured in different individuals nearly
always falls within that range (Grove et al., 2001;
Ledgeway & Rogers, 1999; Nakayama, 1977; our Figure 7).
The lower left panel of Figure 12 shows the relationship
between E and > when eye position does not follow
Listing’s law. There are many such eye positions, but we
show those with both eyes’ Helmholtz torsion being zero.
In this case, the horopter does not lie precisely in the ground
plane for any value of E, but it comes closest at a value of
2.32- and is again approximately in the ground for values
between 1.5- and 6- at all but the nearest distances. Thus,

Figure 12. The relationship between fixation distance and the slant of the empirical vertical horopter with respect to the ground plane.
Each panel plots the angle between the empirical horopter and the ground (>) as a function of the distance along the ground of the point of
fixation. Upper left: eye positions following Listing’s law. Each curve represents the relationship between > and fixation distance along the
ground for a particular Helmholtz shear (E). The insets show the viewing situation for three points. The observer’s head is always upright
and eye position follows Listing’s law as he fixates different points in the ground. Interocular distance is 6.5 cm and eye height is 160 cm
for the simulated viewer. Upper right: a magnified view of the upper left panel. > is exactly zero for all distances when E is 2.32-. Lower left:
Eye positions not following Listing’s law but rather maintaining a Helmholtz torsion of zero in each eye. There is no value of E that keeps
the horopter in the ground at all distances, but the best value is still È2-. Lower right: Vertical horopter of the cat when eye position follows
Listing’s law. > is exactly zero for all distances when E is 10.9-.
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eye positions that do not obey Listing’s law can still keep
the horopter in the ground at all but near distances.
It is interesting to consider the vertical horopter in

ground-dwelling species of different heights. Cooper and
Pettigrew (1979) measured the positions of corresponding
points near the vertical meridians in cat visual cortex and
found an extorsion of approximately 11-, which is much
greater than in humans. The lower right panel of Figure 12
shows the relationship between E and > when the cat
fixates in the plane of the ground with eye positions
following Listing’s law. The horopter lies exactly in the
ground when E is 10.9- (Equation 5) and is close for
values between 5- and 20-.
In summary, we believe that Helmholtz’s proposal was

stronger than themodern interpretation of it. He proposed that
an appropriate horizontal shear (Ecrit) keeps the vertical
horopter in the ground as an upright viewer makes Listing’s
eye movements to look from one mid-sagittal location in the
ground to another. This is clearly advantageous because it
places the region of single vision and best stereopsis in the
predominant environmental surface. Interestingly, computer-
vision algorithms have adopted a similar shear for two-
camera systems used to guide vehicles across the ground
(Koller, Luong, & Malik, 1994).
Helmholtz’s proposal involves a simplification of

natural viewing. People usually fixate the ground by
rotating the eyes downward relative to the head and
rotating the head downward relative to the neck. Of
course, the head rotation causes Listing’s Planes to move
so the geometry in Figure 10 is altered. A more complete
account of the position of the vertical horopter relative to
the ground would have to examine the contributions of
head pitch and of deviations of binocular eye movements
from Listing’s law (Haslwanter, Straumann, Hess, &
Henn, 1992; Mok et al., 1992; Nakayama, 1983; Tweed,
1997; Van Rijn & Van den Berg, 1993).

The empirical horopter and the ground plane

We showed above how a Helmholtz shear that is
appropriate for a subject’s interocular distance and eye
height keeps the empirical vertical horopter in the ground
plane for all fixations in the ground and mid-sagittal
planes. We now consider the horizontal extension of the
empirical horopter for fixations in the ground and the mid-
sagittal planes. Thus, we need to consider not only the
Helmholtz shear but also the Hering–Hillebrand deviation
H that describes the curvature of the horopter relative to
the Vieth–Müller circle.
The literature suggests that the Helmholtz shear is 2–3-

on average near the vertical meridians of the eyes (Grove
et al., 2001; Helmholtz, 1925; Ledgeway & Rogers, 1999;
Nakayama, 1977; our Figure 8). The literature also
suggests that the Hering–Hillebrand deviation H is 0.10–
0.15 on average (Ames et al., 1932; Fischer, 1924; Grove

et al., 2001; Hillis & Banks, 2001; Ledgeway & Rogers,
1999; our Figure 7). To determine how well the horizontal
extension of the horopter fits the ground plane, we
calculated the minimum-disparity horopter using values
of 2.3- for the Helmholtz shear and 0.10 for the Hering–
Hillebrand deviation. For simplicity, we assumed that the
shear was the same for all azimuths and the deviation the
same for all elevations; there is of course some evidence
that the former assumption is slightly incorrect (Figures 8
and 9).
For a given H, the curvature of the horizontal extension

of the horopter varies with distance. There is one
distanceVthe abathic distanceVat which the extension
is planar. That distance is d = i/H, where i is interocular
distance (Ogle, 1950). For distances less than the abathic
distance, the extension is concave; for greater distances, it
is convex. Thus, it is impossible for the horizontal
extension of the horopter to be planar at all distances.
Movie 2 illustrates this fact. In the left panel, a standing
viewer is fixating in the ground plane and the mid-sagittal
plane. The blue lines represent the two eyes’ lines of sight
and the green dashed line is an earth-horizontal line. The
distance to the fixation point is greater than the abathic
distance of 64 cm, and as a result, the horizontal extension
of the horopter is convex such that it lies beneath the
ground plane on the sides. The horopter surface in this
case is a smooth ridge rather than a plane. The curvature
of the ridge would increase with increasing fixation
distance, so at long distances the horopter surface would
be well below the ground on the sides. Thus, the
horizontal extension of the horopter cannot in general be
coincident with the plane of the ground.
Perhaps the horopter is more coincident with a nearer

surface than the ground. The right panel of Movie 2
illustrates such a situation. The viewer is fixating a point
above the ground at a distance corresponding to the
abathic distance; again, the blue lines represent the lines
of sight. For a planar surface to be nearly coincident with
the horopter, it must be slanted relative to the line of sight
as shown. Now the center of the horopter is planar and
coincident with the surface, but the top of the horopter is
concave and the bottom is convex. The changing
curvature is a consequence of the interaction between
the Helmholtz shear and the Hering–Hillebrand deviation.
Because H is constant as a function of elevation (Figure 7
and Grove et al., 2001) and the Helmholtz shear is greater
than zero (Figure 8 and many reports), the horopter has
different curvatures at different elevations relative to the
fixation point.
In summary, the viewing situation for which the

horopter comes closest to being coincident with a planar
surface is when the surface distance is equal to the abathic
distance and the surface is slanted relative to the line of
sight. It seems that this situation is close to the situation in
normal working environments (Ankrum et al., 1995). We
should point out that many previous investigators
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observed H values greater than the value of 0.1 that we
assumed here (Ames et al., 1932; Hillis & Banks, 2001;

Ogle, 1932; Shipley & Rawlings, 1970). In those cases,
the horopter comes close to being coincident with a yet
nearer surface than shown in the right panel of Movie 2.

Conclusions

Our goal was to find the surface that comes closest to
stimulating empirical corresponding points in the retinas.
To achieve this goal, we first measured the retinal
positions of empirical corresponding points for the central
portion of the visual field. Those measurements showed
that the Hering–Hillebrand deviation that had previously
been measured along the horizontal meridian is also
observed above and below that meridian. The measure-
ments also showed that the Helmholtz shear that had
previously been measured along the vertical meridian is
observed left and right of the head’s mid-sagittal plane; it
is largest, however, in the mid-sagittal plane. Finally, the
measurements showed that there is no systematic vertical
shift of empirical corresponding points relative to one
another. The fact that we do not observe such shifts means
that the vertical-disparity pattern is not optimized for near
viewing.
With those measurements in hand, we next ran a

simulation to find the binocular eye position that mini-
mized the disparity between stimulated points relative to
empirical corresponding points. There was an eye position
for each observer that yielded the minimum overall
disparity, but that position varied significantly across
observers. Using the minimum-disparity criterion, the
fixation distance corresponding to the best position was
90 to 279 cm, depending on the observer.
We also examined the coincidence between the horopter

and planar surfaces when the observer fixates such
surfaces. We found that the empirical vertical horopter
comes very close to lying in the ground plane as the
observer fixates various positions in the ground. This
suggests that the Helmholtz shear of retinal correspond-
ence may be adaptive for viewing the ground plane. The
Hering–Hillebrand-deviation, on the other hand, produces
a convex optimal surface that is bent out of the ground
plane and is therefore unlikely to be adaptive for ground
plane viewing. Using the criterion of how well the
horopter surface coincides with planar surfaces, we find
that the Helmholtz shear and the Hering–Hillebrand
deviation are adaptive for viewing near objects that are
approximately planar.
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