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A virtual ophthalmotrope illustrating oculomotor
coordinate systems and retinal projection geometry
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Eye movements are kinematically complex. Even when only the rotational component is considered, the noncommutativity
of 3D rotations makes it hard to develop good intuitive understanding of the geometric properties of eye movements and
their influence on monocular and binocular vision. The use of at least three major mathematical systems for describing eye
positions adds to these difficulties. Traditionally, ophthalmotropes have been used to visualize oculomotor kinematics. Here,
we present a virtual ophthalmotrope that is designed to illustrate Helmholtz, Fick, and rotation vector coordinates, as well as
Listing’'s extended law (L2), which is generalized to account for torsion with free changing vergence. The virtual
ophthalmotrope shows the influence of these oculomotor patterns on retinal projection geometry.
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Introduction

Movements of the eye are kinematically complex and
can be described as a combination of rotations about
changing rotation centers (Fry & Hill, 1962, 1963). But
even when ocular mechanics are simplified to pure
rotations about a head-fixed rotation center, their non-
commutative property makes them difficult to visualize.
Eye movements are described in the literature by at least
three different main oculomotor coordinate systems,
namely, the Helmholtz, Fick, and rotation vector/quatern-
ion or Listing’s system, to complicate matters further.
Here, we present a virtual gimbaled model of the
oculomotor system, which provides accurate visualization
of the kinematics of the three major oculomotor coor-
dinate systems and qualitative estimates of the effects of
the different coordinate systems on ocular torsion.

Historically, mechanical representations of oculomotor
mechanics, called ophthalmotropes, have been used for
visualization of eye movements and their interaction with
visual geometry. Simonsz and de Tonkelaar (1990)
describe the development of this device from Ruete’s first
version (Ruete, 1845), which had the eye mounted in
nested gimbals, and his second model, which emulated
Listing’s law and mounted the rotation axis in a rotatable
ring (Ruete, 1857), to Donders’ integrated version
(Donders, 1870). Ruete combined both gimbaling and a
unique orientable rotation axis in a single model. The
virtual ophthalmotrope presented here is a modification
and extension of Donders’ design, by adding Listing’s
extended law (L2; Mok, Ro, Cadera, Crawford, & Vilis,
1992; van Rijn & van den Berg, 1993) and displacement
plane geometry to its basic visualization capabilities.
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First, we will give an overview of the fundamental
mathematical properties of the three oculomotor coordi-
nate systems represented by the model. Specific instruc-
tions will then be given to visualize important properties
of oculomotor coordinates, with respect to both oculomo-
tor behavior and the visual geometry of binocular vision.

Although this article and the model make strong use of
rotational mathematics, we did not provide rigorous
mathematical descriptions in the main text to emphasize
an intuitive and geometric approach. For more formal
treatments of rotation mathematics relevant to eye move-
ments, the reader is referred to Haslwanter (1995),
Haustein (1989), and Tweed and Vilis (1987).

Oculomotor coordinates

If we neglect translation of the eye in the orbit and
dynamic changes of the rotation center of the eye with eye
position, then eye movements can be described as 3D
rotations around a single, head-fixed center of rotation.

Euler’s theorem states that any rotation in 3D space can
be described by a set of three numbers (the oculomotor
coordinates), but the recovery of rotation from these coor-
dinates must be described in detail by a specific
coordinate system.

Each coordinate system describes how to quantify a
final orientation based on eye rotations from an initial
reference position. While this reference position is
mathematically arbitrary, straight-ahead gaze is com-
monly used. There are two distinct ways to describe a
rotation away from that reference position: either with a
series of rotations about three predefined axes or by a
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single unique rotation axis and an angle of rotation around
it. Although these descriptions are mathematically equiv-
alent, the resulting coordinates can be quite different in
terms of their geometric meaning (e.g., what path
describes a horizontal rotation), their interaction in
determining gaze position (e.g., noncommutativity), and
their practical usefulness for considering geometric prob-
lems related to eye movements (e.g., how they influence
the orientation of the retinal image).

When describing rotations about three gimbaled axes,
the nesting and exact orientation of the component
rotations’ axes are important. A possible source of
confusion is the fact that rotations that change gaze
direction horizontally are executed around a rotation axis
that is oriented vertically and vice versa for vertical gaze
changes. Here, we will refer to such rotations as horizontal
and vertical rotations, respectively, always referring to the
dominant direction of gaze movement rather than the
orientation of the rotation axis.

Because rotations in 3D space are not commutative, the
same rotations, when carried out in a different order, will
produce different final positions. Consider the first row of
Figure 1, where the same earth-fixed rotation axis and
rotation angles are used, but the order of the rotations is
reversed between the left and right columns, and the final
position of the owl is different.

Now, consider the second row of Figure 1, where the
first rotation changes the orientation of the second
rotation’s axis. This operation is also noncommutative as
is evident from the different end positions obtained in the
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left and right columns. Mathematically, when rotation
axes stay fixed in space, as in the top row of Figure 1, the
rotations are called active rotations, whereas the bottom
row depicts passive rotations, where the underlying
coordinate system is rotated rather than the object, and
thus, the orientation of both the object and the axis
changes.

Changing between active and passive rotation systems
is mathematically equivalent to reversing the order of the
component rotations. This is why the end positions on
the two diagonals of Figure 1 are the same, although the
component rotations in space are quite different—the four
panels correspond to only two mathematically different
ways of turning the owl around a horizontal and a vertical
axis. Thus, in addition to the magnitude of the component
rotations and the axis they are to be executed about, we
also need to specify the order of rotations to fully
determine a coordinate system.

One solution is to nest the coordinate axes, such that
one rotation is carried out around a space-fixed axis that
changes both the object’s orientation and the orientation
of the axis for the other rotation. While this superficially
looks like the second row of Figure 1, the important
difference is that the nesting operates with fixed axes,
rather than a fixed order of execution. Such coordinate
systems are called gimbaled coordinate systems because
they can be represented by a physical nesting of the three
rotation axes required to express a full 3D rotation. There
are an infinite number of possible coordinate systems, but
for easy intuition, we want a horizontal and a vertical axis,

Vertical, Horizontal

513 13\ &2
g @[
<
2 3
:?,1"13 ‘)213\
o
3 2 3

Figure 1. The effect of order of rotations and effect on axis position in an Euler angle system. When the axes are earth fixed (top row,
active rotations), flipping the order of the identical horizontal and vertical rotation components produces a different end position. The same
is true when the axes move with the object. The first rotation changes the orientation of the second rotation axis as well as that of the

object (bottom row, passive rotations).
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which leaves an orthogonal axis along the eye’s line of
sight in straight gaze as an obvious third choice. This
degree of freedom is called ocular torsion. This axis is
always last in the gimbal order; hence, both horizontal and
vertical rotations change the third axis’ orientation, thus
ensuring that torsional rotations are always around the line
of sight. As we will see later, this is not true for rotation
vector systems, where changes in the torsion coordinate
will also change gaze direction. This makes eye orienta-
tion a much harder concept to grasp in such systems.

These two restrictions of axis orientation and ordering
leave only two possible coordinate systems, distinguished
by the order of horizontal and vertical rotations. There is
one where horizontal rotations about a head-fixed vertical
axis change the axis for vertical rotations and a second
one where vertical rotations about a head-fixed horizontal
axis change the axis for horizontal rotations. The
coordinates in the first system are called Fick coordinates,
and the coordinates in the second system are called
Helmbholtz coordinates.

Gimbaling does not prescribe the temporal order of
rotations. Rather, it fixes their nesting order. This means
that in a gimbal setup, where the horizontal rotation
affects the axis for vertical rotations, the vertical angle
may be set first, but the gimbaling will make sure that the
subsequent horizontal rotation will appropriately change
the orientation of the vertical axis and the rotation already
applied around it. This means that in a gimbaled system,
the component coordinate changes can be broken up and
mixed so that a horizontal coordinate change of 10°,
followed by a vertical change of 15° (H10, V15), produces
the same end state as do V5, H10, V10 and V10, H10, V5.

It is worth pointing out that this property does not arise
because the noncommutativity of rotations has been
circumvented or rendered unproblematic in gimbaled
coordinate systems. The coordinates of gimbaled systems
no longer correspond to set component rotations—in a
Helmholtz system, for example, the horizontal coordinate
codes different rotations depending on the vertical
coordinate—and while these components commute, they
no longer capture the full geometry of rotations. Gimbaled
coordinate systems, for example, by necessity contain
poles, where the coordinate components become ambig-
uous. These poles are an artifact of gimbaling and do not
reflect a property of rotations themselves.

Gimbaled systems: Fick and Helmholtz
coordinates

Fick coordinates are what we intuitively use when
describing the direction of a target in 3D space. The
horizontal and vertical components of direction are called
azimuth and elevation. Horizontal (azimuth) rotations
point the eye toward an imaginary vertical column passing
through the target, and vertical (elevation) rotations direct
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gaze upward along that column around an eye-fixed
rotation axis. Presumably because we tend to orient toward
remote targets by rotating either our body in space or our
head on the trunk horizontally about an earth vertical axis,
and then upward about an axis orthogonal to the azimuth
direction, the Fick system is the easiest oculomotor system
for visualizing monocular gaze direction.

Reversing the role of the horizontal and vertical axes
moves us from Fick to Helmholtz coordinates. As
mentioned above, in a Helmholtz coordinate system, the
axis for horizontal rotations tilts with vertical rotations.
Because the eyes are separated horizontally, this means
that both eyes share the same head-fixed axis for vertical
rotations in the Helmholtz system. This, in turn, gives a
special geometric meaning to zero vertical vergence—
which, in Helmholtz coordinates, indicates that the lines
of sight meet in a real target in space—and to zero
torsion—which, in Helmholtz coordinates, represents tor-
sional rotations of the eye relative to the visual plane. This
makes Helmholtz coordinates uniquely suited for evaluat-
ing the effect of eye movements on alignment of retinal
images and binocular corresponding points. All of these
properties will be demonstrated below by the web model
of the ophthalmotrope.

Rotation vectors and quaternions: Listing’s
coordinates

The Helmholtz and Fick coordinate systems describe
rotations by breaking them up into component rotations
about predefined axes. However, we can also define any
rotation in 3D space by the spatial orientation of a single,
unique axis and the rotation angle around that axis. A
simple way of doing that is to define a vector, called a
rotation vector, that points in the direction of the rotation
axis. The vector is oriented such that the rotation obeys
the right-hand rule; that is, the direction of rotation is
in the direction of the curled fingers of the right hand when
the thumb points toward the tip of the vector. The length
of this vector is the tangent of half the rotation angle.

Any eye position P then can be represented by such a
unique rotation vector, representing the rotation from
some reference position to P. Commonly, the reference
position is the straight-ahead direction. A rotation vector
with a nonzero component along only one of the
coordinate axes then represents a rotation around this
axis. For this reason, the components of rotation vectors
are often called the horizontal, vertical, and torsional
component. This labeling can be misleading, however, as
the geometric meaning of these components is quite hard
to understand, particularly in tertiary gaze directions,
especially for the torsional component. We will see some
examples of this in the Demonstrations section.

Although such a rotation vector superficially does look
like a vector, which explains its popular name, it is not, in
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fact, a vector at all. This can be illustrated by the fact that
rotations or mirror transformations do not change a
rotation vector the same way they would a spatial vector.

Rotations are not commutative, whereas vector addition
by definition is. Moreover, when the coordinate system for
representing spatial coordinates is changed, rotation
vectors do not always change the same way as spatial
vectors do.

Consider, for example, a rotation vector representing a
horizontal rotation to the left. Because of the right-hand
rule, this vector points upward. Now, if we mirror
transform the whole scene on the midsagittal plane, that
vector should not be affected because it is lying within
that plane. However, under this mirror transformation, the
leftward rotation becomes a rightward rotation, flipping
the rotation vector for the mirrored scene downward. A
more effective mathematical treatment of rotations can be
achieved using quaternions—four-dimensional entities
first conceived by Sir William Rowan Hamilton in 1843.
Quaternions contain a vector component that is essentially
identical to a rotation vector and a scalar component that
achieves their elegant transformation behavior. The main
difference between the rotation vector component of a
quaternion and the rotation vector describing the same
rotation is that the components in the quaternion are
scaled such that the total length of the vector is the sine of
half the rotation angle, rather than the tangent. Quatern-
ions provide an elegant and concise way of describing eye
positions, which is mathematically superior to a simple
rotation vector treatment. The interested reader is referred
to Hanson (2005) for a general introduction and to
Haslwanter (1995) and Tweed (1997) for more oculomo-
tor-related treatments. For the purpose of this article and
model, however, quaternion coordinates are very similar
to rotation vector coordinates and will not be treated
separately.

Because Listing’s law (see the next section) has a
particularly simple form when expressed in rotation
vectors or quaternions, the components of the rotation
vector or the vector components of the associated
quaternion are sometimes called Listing’s coordinates.

Listing’s law

It was first proposed by Donders (1848) that the human
oculomotor system uses only two of the three degrees of
freedom available for 3D rotations, making the rotation
angle around the line of sight (ocular torsion in Fick and
Helmholtz coordinate systems) a function of gaze direc-
tion. This general restriction on ocular rotations, called
Donder’s law after a suggestion by Helmholtz (1867), was
made more specific by Listing, who proposed a simple
geometric description that captured the functional rela-
tionship. Listing’s law, as it is now commonly called,
follows a suggestion by Ruete (1853). It states that when
eye position E is described as a single rotation from a
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reference position Ry, then the rotation axes of all such
rotations R; — E will lie within a single plane. This plane
is called the displacement plane for that reference
position. It is worth pointing out that Listing’s law does
not accurately specify human torsion for all gaze
directions and distances and must be extended into L2 to
consider the changes in torsion with convergence (Mok
et al., 1992; van Rijn & van den Berg, 1993).

This description unambiguously specifies Donder’s law,
in that for every gaze direction, there now is a unique
torsional rotation angle that can be determined by
executing the rotation from the reference direction.
However, it only directly describes the orientation of
rotation axes for rotations away from that reference
position. To find the rotation axis leading to an eccentric
position E starting from a different reference position R,
we can use the original displacement plane for position
R,. To get from R, to E, two rotations within this plane
must be executed in sequence: first, the inverse of R; —
R,, followed by R; — E. Mathematical analysis reveals
that all these combined rotations R, — E are again located
in a single plane—the displacement plane for R,. This
new displacement plane can be obtained from the
displacement plane for position R; by rotating it in the
direction of Ry — R, and by half the angle of that rotation
(Tweed, 1997; see the Appendix; also see Judge, 2006).

This systematic change in the angle between the
displacement planes and their respective reference posi-
tion, known as the half-angle rule, means that there is one
unique reference position P, for which the displacement
plane is orthogonal to P. This reference position is called
primary position, and its displacement plane is called
Listing’s plane.

Listing’s law can then be reformulated in terms of
Listing’s plane, such that any eye position can be reached
by rotating away from primary position by rotation around
a single axis orthogonal to that primary position. Thus,
when eye rotations follow Listing’s law, the specification
of the primary position fully captures oculomotor behavior.

The binocular extension of Listing’s law: L2

Allen (1954) found that Listing’s law does not hold
during vertical or horizontal vergence. In the 1990s,
several groups studied the quantitative effects of vergence
on rotational kinematics and found that while rotation
axes of monocular eye movements are still confined to a
plane when vergence is held constant, a change in
vergence changes the orientation of these planes (Mok
et al.,, 1992; van Rijn & van den Berg, 1993). When the
eyes are converged by an angle v, the two eyes’ reference
positions and Listing’s planes rotate outward by a fraction
of the vergence angle, uv, in a pattern that has been
likened to the opening of saloon doors (Tweed, 1997).
This has been called L2 to indicate that it is a binocular
version of the monocular Listing’s law, which it contains
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as a special case for u = 0. The various studies did not
agree on the empirical value of p. It has been argued
that L2 benefits the oculomotor system during vertical
movements by maintaining vertical and torsional align-
ment of the retinal images located within the visual plane
(Misslisch, Tweed, & Hess, 2001; Schreiber, Crawford,
Fetter, & Tweed, 2001; Schreiber, Tweed, & Schor, 2006;
Tweed, 1997). The theoretical optimum for achieving
alignment would be an L2 with u = 0.5; that is, each eye’s
Listing’s plane and primary position rotate temporally by
half the total vergence angle. Note that because of the
half-angle rule, this is equivalent to the displacement
planes for straight ahead rotating temporally by a quarter
of the total horizontal vergence.

We will explore the visual consequences of the
theoretically optimal L2 in the Demonstrations section.

Basic functions

VRML environment

The Ophthalmotrope software was written in Virtual
Reality Markup Language (VRML) and needs to be
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displayed in a VRML browser plugin or stand-alone
viewer.

The VRML viewer will provide the user with a set of
navigation modes allowing for rotation of objects and
movement of the user. The plugin also makes accessible a
series of viewpoints in predefined positions. If the user
ever gets lost while navigating or the model’s navigation
controls get obscured by a nearby object, it is always
possible to return to the initial view by selecting the
viewpoint labeled up close. Most of these options will be
accessible either through a viewer control panel or
through a context menu accessible through right mouse
click. Readers should refer to their viewer’s documenta-
tion for more information.

Rotation axes

Figure 2 shows the main elements of the model and the
controls used to execute its functions. The eyes are
mounted in a gimbal with five main axes of rotation
(Figure 2, Elements 1-4) and one auxiliary axis (Figure 2,
Element 2). With the exception of the auxiliary axis,
which is used for emulating rotation vector coordinates
and changes in reference and primary position for
Listing’s law (see below), all axes can be individually

-8 o

Figure 2. The components of the ophthalmotrope. (1) Cross indicating ocular torsion. (2) Turquoise ring (guide for torsional rotations);
auxiliary rotation ring and axis; green rotation axis. (3) Red rotation axis, mounted on yellow slider (see inset). (4) Blue rotation axis and
sliding foot for rotations of Listing’s plane. (5) Motor coordinate system toggle switches. (6) Gaze position sliders. (7) Gaze control button.
(8) Display toggle switches. (9) Animation toggle switches. (10) Reference position controls (Listing motor system only). (11) Coordinate

displays. See main text for details.
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Figure 3. The gaze control sliders for the free motor coordinate system setting.

controlled by selecting the “free” motor coordinate
system, which brings up a set of sliders color coded to
match the axis colors (Figure 3). The individual axes are
as follows:

Cyan. This axis produces torsional rotations around the
line of sight. It is also used internally to compensate for
changes in position of the yellow rider when switching
between Helmholtz and Fick coordinate systems and
orienting the green axis for rotation vector systems.
Green. This produces horizontal rotations for Helmholtz
coordinates and vertical rotations for Fick coordinates.
In all rotation-vector-based systems, the ocular rotation
is executed around this axis.

Red. Rotates around the red axis. This produces vertical
rotations for Helmholtz coordinates and horizontal
rotations for Fick coordinates and allows green rotation
axis to tilt out of Listing’s plane in the torsional
direction for rotation vector coordinates.

Yellow. Moves the yellow slider in the grooved half
circle (see inset at top left of Figure 2). A 90° rotation
around this axis switches between Fick and Helmholtz
coordinates by reorienting the red and green axes (the
torsional effects of this are cancelled by a counter-
rotation of the cyan axis). The yellow axis is also used
for the rotation vector systems to orient the green axis.
Blue. This axis produces a rotation of the whole gimbal
setup around a vertical axis. This is used for changes in
the reference position for Listing’s law (see the
Listing’s law and L2 section).

Function buttons

The control button section on the left side of the screen
is split into three panels.

The top panel of buttons (Figure 2, Element 5) allows
the selection of different oculomotor coordinate systems
for moving the eyes. The four possible systems are
gimbaling according to Fick (Fi) and Helmholtz (HH)
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coordinates, Listing’s law (LL), and L2. The fifth setting
allows directly accessing the individual rotation axes’
angles and is called free control (Fr).

Eye position is changed by using the conjugate/version
sliders (Figure 2, Element 6), labeled c¢, and the
disconjugate/vergence sliders, labeled d, for each of the
three dimensions. The yellow button above each slider
resets the slider below to zero.

The gaze mode selector (Figure 2, Element 7), located
to the right of the version and vergence sliders, enables
switching between the gaze-fixed (“gf”’) and gaze-variable
(“gv”) setting. In the gaze-fixed setting, the sliders
prescribe the same gaze configuration for all coordinate
systems. Selecting different coordinate systems changes
the arrangement of the rotation axes and the actual
rotations used to achieve the final gaze position, but for
all coordinate systems, actual gaze direction is coded by
the sliders in Helmholtz coordinates. Torsion in the gaze-
fixed setting is always around the line of sight, with zero
torsion representing the zero torsion of the selected
coordinate system.

Conversely, in the gaze-variable setting, the sliders
actually code the coordinate components of the selected
coordinate system. In this setting, changing between
coordinate systems thus affects the direction of gaze as
well as the configuration of the rotation axes. Torsion in
the gaze-variable setting is the torsion prescribed by the
selected coordinate system and, thus, not necessarily a
rotation around the line of sight.

From here on, whenever the instructions require the
pressing of one of the function buttons, the button label
will be referred to in brackets. The functions of the three
colored buttons in the second panel (Figure 2, Element 8)
are as follows:

Blue/Sc—visual scene switch. Switches between 34
cube objects located in two frontoparallel planes and
a single frontoparallel plane at the distance of the far
cubes. The cubes are used for guiding fixations,
either by manually selecting them or automatically in
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movement mode (Mv), whereas the frontoparallel
plane is useful for the visualization of frontoparallel
projection geometry.

Red/LS—lines of sight. Toggles the lines of sight
emanating from the two eyes’ foveas for the cube
target visual scene and the two eyes’ meridional planes
for the frontal plane scene.

White/Tr—transparency (two small buttons). The right
of the two white buttons makes the surface of the
eyeballs transparent, for easier evaluation of retinal
projections. The left button removes some of the
gimbal mounting and changes the axis display to
emphasize the mathematical principle rather than the
mechanical gimbaling.

The third panel (Element 9) contains two buttons that
control the animation state of the model. The buttons are
as follows:

Green/Mv—move. This button toggles the fixation
animation mode. When animation mode is active, the
eyes will fixate the target cubes in a defined sequence
of first horizontal and then vertical sweeps of the far
cubes, followed by alternations between far and near
cubes. Animation mode also works when the target
cubes are not visible.

Pink/Fo—following. This button activates following
mode, which will make the eyes fixate the user (within
a physiological range).

When the motor coordinate system selector is set to
Listing and the gaze mode is in the gaze-fixed setting, the
reference/primary buttons become available (Figure 2,
Element 10). As explained in more detail below, these
can be used to change the reference and primary
directions for Listing’s law and study the influence of
these changes on rotation axis orientation and torsional
eye position.

At the bottom left and right of the screen, the
current coordinates are displayed (Figure 2, Element 11).
These coordinates are relative to the currently selected
motor coordinate system, independent of the selection of
gaze control. For example, when the Fick motor system is
selected, the numbers displayed are always Fick coordi-
nates, even if gaze control is on “m” and the sliders
change gaze in Helmholtz coordinates.

The last, green button on the top panel, labeled “Fr” for
free, allows the setting of each coordinate axis individu-
ally and independently of the other four, with the
exception of the cyan/torsional axis being influenced by
a change in the yellow axis, to keep the torsional reference
stable in space, and the auxiliary axis, which cannot be
controlled by the user at all.

Activating this button will replace the panel contain-
ing the six vergence/version sliders and associated
buttons (Figure 2, Elements 6 and 7) with 10 sliders in
two sets of five (Figure 3), one for each eye, which are
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color coded in correspondence with their respective
rotation axes.

Viewpoints

There are 12 predefined viewpoints in the model, which
can be reached by using the functions of the VRML
plugin. These viewpoints are the following:

Up close. This position is ideal for observing the action
of the rotation axis and for reaching all the buttons. The
targets are not visible from this position.

Front. A frontal view of both eyes and the target cubes.
Side. A side view of eyes and targets, allowing access
to the buttons and sliders while showing all of the
geometry.

Behind, Behind up. Symmetrical view of the target
cubes and projections from behind.

Between. View from the cyclopean eye position.

Left eye. Foveal view from the left eye.

Left eye—meridian. Retinal view from the left eye’s
horizontal meridian.

Left eye—tertiary. Eccentric retinal view from the left
eye.

Right eye. Foveal view from the right eye.

Right eye—meridian. Retinal view from the right eye’s
horizontal meridian.

Right eye—tertiary. Eccentric retinal view from the
right eye.

Demonstrations

Gimbaled coordinates

Figure 4 shows the axis arrangement for the two
gimbaled coordinate systems.

To familiarize yourself with the rotations involved,
from the up close viewpoint, select Fick or Helmholtz on
the coordinate system selector (Figure 2, Element 5) and
move the fixation target manually (with the gaze mode
selector in the gaze-fixed setting) or start the movement
animation (Mv). Watch how the axes interact to achieve
the final position. Note that when setting only one of the
gaze coordinates to a nonzero value at a time, moving
gaze along the horizontal and vertical meridians, respec-
tively, the axes for the Fick and Helmholtz system are
identical and the coordinates agree.

Special role of Helmholtz coordinates

Now, set the gaze coordinates to a tertiary position close
up by moving the respective sliders to positive horizontal
vergence (second slider), nonzero horizontal and vertical
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Figure 4. The gimbal arrangement for the Fick (left) and Helmholtz (right) coordinate systems. Note that, in Fick coordinates, the axis
for horizontal movements changes the orientation of the axis for vertical movements. In Helmholtz coordinates, that dependence is

reversed.

version (first and third sliders), and zero vertical vergence
(fourth slider). In Helmholtz coordinates (HH), vertical
rotations are executed about the same head-fixed axis in
both eyes. Horizontal rotations of the line of sight for each
eye are then executed around an axis that is tilted back the
same amount and in the same direction in each eye,
ensuring that both eyes’ lines of sight are confined to the
visual plane. Unless horizontal vergence is zero (in which
case the two gaze lines are parallel), the lines of sight
always intersect. Conversely, when both eyes fixate a
single target, their Helmholtz vertical coordinates are
equal.

Difference between Fick and Helmholtz

By switching to Fick coordinates (Fi) and observing the
coordinate readout, you can see the same is not true for
Fick angles. Because lateral targets are closer to one eye
than to the other, they have unequal Fick elevation in the
two eyes.

A second way to visualize that is to switch the gaze
mode to “gv” without changing the slider positions. Now,
the two lines of sight no longer intersect, because in Fick
coordinates, this would require nonzero vertical vergence
for lateral gaze. This also demonstrates that the same
coordinates (as selected on the sliders and shown in the
coordinate displays) represent different gaze directions in
the Helmholtz and Fick coordinate systems.

Projections onto a frontoparallel plane

A common way to visualize oculomotor coordinate
systems and eye position data, in general, is by projection
onto a frontoparallel plane. From the behind up viewpoint,
change to the target plane view (Sc). Select Fick motor
coordinates (F1).

The horizontal and vertical lines on the frontoparallel
target plane represent isoelevation and isoazimuth lines
for the motor coordinate system selected. Switch the
gaze mode to “gv”’. Now, a change in the horizontal
slider changes the horizontal coordinate for the selected
coordinate system. Set all vergences to zero by pressing
the yellow buttons above the sliders. Set horizontal
version to its maximum positive value and vertical
version to its maximum negative value. Switch on the
lines of sight by pressing the red button (LS) on the
control panel.

You should now see both eyes’ lines of sight pointing to
the top left corner of their respective frontoparallel
projection line grids (see Figure 5). Now, change the
horizontal version slider to its negative maximum and
note the curved path the lines of sight describe on the
target plane. Change vertical version next and trace out
the vertical projections. Note that it is the rotation around
the head-fixed axis that produces the curved frontoparallel
projections.

Change the coordinate system to Helmholtz (HH) to see
how that affects the frontoparallel projection grid.
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Figure 5. Monocular isoazimuth and isoelevation frontoparallel projection lines for Fick coordinates. Note the curvature of the isoelevation
lines and the straight vertical orientation of isoazimuth lines. Their apparent tilt is a perspective effect due to the raised viewpoint.

This illustrates that a change in azimuth and elevation
follows different geometric patterns and has a different
meaning, depending on the coordinate system.

Rotation vectors

From the up close viewpoint, set the gaze mode selector
to “gv” and select either Listing’s (LL) or L2 coordinates
(there is no difference between the two in this setting).

Now, changes in eye position are achieved by orienting
the green rotation axis in space and then rotating the eye
around that axis. The orientation of that axis represents the
orientation of the rotation vector. To better see the axis
orientation and vector length, make the eyes transparent
and change to axis mode by clicking on both white
buttons. You should now see a single green axis per eye
and a green disc indicating the length of the rotation
vector.

Return all sliders to zero. Varying horizontal version
moves the rotation axis to a vertical position. Increasing
the rotation angle does not change the direction of the
axis. The same pattern can be observed for vertical
rotations. The orientations of the rotation axes for pure
horizontal and vertical movements in rotation vector
coordinates coincide with those in the Helmholtz and
Fick systems, but the amount of rotation does not scale
identically.

Now, move the eyes to a tertiary position and change
either the horizontal or the vertical coordinate. Note how

the rotation vector changes its orientation as well as its
length.

With gaze in a tertiary direction, change to the free
motor system (Fr). You can now change the rotation angle
around the current rotation axis by moving the green
slider. Reset the green axis to zero to get back to reference
position.

Coordinate scaling

For rotation vector coordinates, the coordinate display
shows the values of the rotation vector components,
multiplied by a factor of 100 for easier comparison to
the angles for Fick and Helmholtz systems. The sliders
change these components linearly and have been scaled
such that for half the maximal slider setting, the rotation
angle for a rotation around a single axis is the same for the
gimbaled coordinate systems and the rotation vector
systems.

For other values, because the total length of the rotation
vector is the tangent of the half angle of rotation, the
relationship between rotation vector coordinates and
gimbaled coordinates is nonlinear. As you can see, by
switching between the motor coordinate systems with
gaze mode selector in the “gv” setting, this difference
between the systems is small but noticeable.

Although every component of a rotation vector repre-
sents one of the elementary rotations, around one of the
primary Euclidean coordinate axes, changes in one of
these coordinates are generally not rotations about this
axis. Changing the horizontal component of a rotation
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vector does not rotate the eye position represented by that
vector around a vertical axis.

In other words, there is no simple geometric meaning to
changes in a rotation vector coordinate. The direction of
rotation corresponding to a change in a single coordinate
of a rotation vector depends on all three components of
that vector. To get an intuition for the complexities
involved, change the viewpoint to behind up, switch on
the lines of sight, and change to target plane view. Now,
change the three version sliders and observe how each
affects the frontoparallel projection of the lines of sight.
Observe that adding torsion affects gaze direction only to
a small degree but profoundly changes the direction of
subsequent horizontal and vertical coordinate changes.

Listing’s law and L2

Return the gaze mode to setting “gf”. In this config-
uration, the eyes obey Listing’s law; that is, the rotation
vectors’ tips are confined to Listing’s plane, which is
orthogonal to the straight-ahead position. Activate anima-
tion mode to observe how the rotation vectors change with
gaze change.

Now, switch to the L2 motor system. As mentioned
above, Listing’s plane and primary position rotate tempo-
rally by half the vergence angle for optimal L2. This has
been implemented in this model by rotating the base of
each eye’s gimbal post. The rotation axes now are
confined to a different Listing’s plane for each eye and
vergence state.

Effects of change of reference position

Return to the Listing motor system (LL). When gaze
mode is in the “gf” position, a group of additional buttons
(Figure 2, Element 10) becomes available, which allows
changing of the reference and primary positions for the
implementation of Listing’s law.

First, move the eyes to a purely horizontal position.
Click on the middle small green button of Element 10.
This changes the horizontal direction of the reference
position to the current position. Activate this setting by
clicking on the larger green button at the bottom of
Element 10. The bases of the gimbal posts now reflect
your new reference position. You can change back and
forth between the original reference position of straight
ahead and your new reference using the large button.

Now, move the eyes to a tertiary position and note the
change in rotation axis orientation when switching
between reference positions. Also note that the final eye
position does not change at all—the kinematics are
unchanged, with the eyes still following standard Listing’s
law. The only difference is the changed origin of the
rotation vector coordinate system. Switching to free mode
(Fr), you can change the green slider to return the eye to
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its reference position. Do this for the manual reference
position and for the standard reference position to
appreciate how an identical final position can be reached
from different references.

Now, switch to animation mode (Mv) with the new
reference position active. Watching closely, you can see
the rotation vector, represented by the green axis, move in
a plane different not only from the frontoparallel plane but
also from the plane of the gimbal post. This is the
displacement plane for the new reference position, and
because of the half-angle rule, it is tilted halfway between
the frontoparallel Listing’s plane and the plane orthogonal
to the new reference position.

Effects of change of primary position

Using the third button of Element 10, you can also
change primary position, while leaving the reference
position straight ahead. To do this, move the eyes to the
desired reference and press the top button of Element 10.
Once again, you can switch between the standard motor
program, where both reference and primary position are
straight ahead, and the modified program. Because of the
half-angle rule, the displacement plane for the unchanged
reference at straight ahead is tilted halfway between the
old Listing’s plane and the new one specified by the new
primary position. Switch to animation mode (Mv) to
follow the rotation vector moving in this new displace-
ment plane for rotations away from the reference position.

In static tertiary positions, switch between the old and
new primary position to see the torsional state of the eye
change due to the change in Listing’s law.

Zero torsion in different coordinate systems

When the gaze mode selector is in the “gf” setting, the
fixation target is specified in Helmholtz coordinates and,
thus, is the same irrespective of what motor system is
selected. The torsional sliders then rotate the eyes around
the lines of sight, which is also consistent with Helmholtz
coordinates. The zero setting on the torsion sliders,
however, reflects zero torsion of the selected motor
coordinate system, not of Helmholtz coordinates.

By moving gaze to a tertiary position and switching
between the motor systems, we can then observe the
difference in the torsional origins between Helmholtz and
Fick coordinates, Listing’s law, and L2. All four gaze
directions are identical, and the first three have zero
torsion in their respective coordinate systems (the torsion
component of a rotation vector conforming to L2 is zero
only if the rotation vector coordinate system’s reference
rotates along with primary position), yet the eyes’
torsional state differs considerably.

This demonstrates that zero torsion is different in the
different coordinate systems. Between Fick and Helmholtz,
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because torsion is defined as rotation around the line of
sight, this gaze-dependent positional offset of torsional
zero is the only complication of torsional coordinates.

Torsion in rotation vectors

In rotation vectors, however, as mentioned above, a
change in torsion is not a rotation around the line of sight.
To see this, change the gaze mode selector to “gv” with
Listing’s motor coordinates selected and vary torsion. Note
how a change in the torsional coordinate changes gaze as
well as the orientation around the line of sight. Torsion in
rotation vector coordinates is fundamentally different from
Helmbholtz or Fick torsion and has a gaze component.

This is true even in secondary gaze positions, as you
can easily verify by resetting either horizontal or vertical
gaze and changing torsion again.

Alignment of the eyes’ meridians

Select the behind up viewpoint once more. Activate the
target plane (Sc) and switch off the lines of sight (LS).
This produces meridional planes from each eye. By
clicking on the target plane, you can fixate any point on
it. Select Fick motor coordinates. You will find that
independent of the location of fixation—as long as torsion
is held at zero—the vertical meridians are always aligned
on the frontoparallel plane, whereas the horizontal
meridians are tilted with respect to one another.
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Switch to Helmholtz motor coordinates (HH) to see the
pattern reverse. Now, the vertical meridians are tilted and
the horizontal meridians align.

Switch to Listing’s law (LL) and note that, here, neither
of the meridians align. Neither do they for L2, but the
rotation angle between them has become significantly
smaller.

In terms of retinal correspondence or disparities, the
misalignment of meridians reflects a predominantly
vertical disparity for the horizontal meridians and a
predominantly horizontal disparity for the vertical meri-
dians. This means that physical targets can still project
onto the vertical meridians when their frontoparallel
projections are misaligned. These targets then will be
located on a vertical line tilted away from the frontopar-
allel plane—the vertical horopter.

Misalignment of the horizontal meridians, on the other
hand, means that no physical target can project onto both
meridians.

Retinal effects of ocular torsion

Make the eyes transparent (Tr, right) and switch on the
lines of sight (LS). Switch back to the target cubes if
necessary (Sc). Select Fick coordinates (Fi). Go to the left
eye viewpoint.

By clicking on the targets, you can direct gaze toward
them. Click on the upper middle cube in the closer
target plane. In this view, the red line of sight emanating
from the right eye represents both the retinal projection

Figure 6. Ocular torsion with respect to the visual plane in the left and right eyes, represented by the lines of sight, for Fick coordinates

and fixation of a close midsagittal target.
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of the visual plane and the epipolar line for the left
eye’s fovea. Note the angle of inclination of this line
relative to the retinal meridian (represented by the
horizontal bar of the pupil cross), reflecting the left
eye’s torsion with respect to the visual plane. Now,
change to the right eye viewpoint. The green line of sight
now intersects the retinal meridian in the opposite
direction. You can change back and forth between the
two eyes’ views by clicking on the arrows to the left of the
screen in these views (Figure 6).

Activating the animation (Mv), you can now see the
angle of torsion relative to the visual plane change with
gaze. Change between motor programs and observe the
effect of differential torsion of the retinal projection of the
visual plane.

It should be noted that this demonstration shows the
effects of zero Fick and Helmholtz torsion and adherence
to Listing’s law and L2, respectively. Any of these eye
positions can be reached in any of the coordinate systems
by specifying the appropriate 3D eye coordinates.

For example, identical positions in alignment with the
visual plane to those for zero Helmholtz torsion can be
achieved in Fick coordinates by adding a gaze-dependent
torsion. This torsional addition to Fick coordinates, which
brings the eyes back into alignment with the visual planes,
is sometimes called false torsion.

Retinal correspondence and epipolar
geometry

A target projecting onto a retinal location R in one eye
must be located along the projection of that location out in
space. Its corresponding projection in the other eye can
then be found along the projection of that line onto that
retina. This line is called the epipolar line of retinal
location R. An optimal algorithm searching for retinal
correspondence to solve the basic problem of depth
perception would restrict its search to epipolar lines,
avoiding false matches in geometrically impossible retinal
locations.

The lines of sight of the eyes, as seen from inside the
eyes, represent the epipolar lines of foveal retinal
locations. While this is not an exact identity, due to the
fact that the VRML plugin does not provide the user with
a projection that reflects actual retinal projection geome-
try, the distortions are constant and can be neglected for
the sake of these qualitative arguments.

Activate the animation (Mv) and return to the left eye
viewpoint. Note how the orientation of the foveal epipolar
line changes in all but the Helmholtz coordinate system.

Next, deactivate the lines of sight (LS) and go to the left
eye—meridian viewpoint and activate the blue lines of
sight by clicking on the spherical marker. You can see the
epipolar line for this retinal location slide around on the
retina. This movement now happens in all the motor
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coordinate system settings, although it is somewhat
smaller for L2 and Helmholtz coordinates.

Finally, switch off the blue projection lines and go to
the left eye—tertiary position. Here, the epipolar line
projects onto its corresponding location for none of the
fixation positions and motor coordinate systems. Again,
the L2 and Helmholtz movement patterns minimize the
movement of the epipolar line.

The two possible strategies for the visual system to deal
with the movement of epipolar lines are to use eye
position to predict their location or give up on using them
to limit stereo matching solutions, in which case the whole
range of epipolar line motion would have to be searched.
Experimental evidence indicates that no prediction of
epipolar geometry takes place for matching (Schreiber
et al., 2001; van Ee & van Dam, 2003), and the mini-
mization of the stereo matching search region has been
suggested as the reason for the oculomotor system’s use of
L2 to drive the eyes (Schreiber et al., 2001, 2006).

Spooky eyes

Finally, return to up close and click on the pink button
labeled “follow”. Now, use your browser’s functions to
move around and feel as though someone or something is
watching you. What a thrill!

Software requirements

The model has been written in VRML 2.0 and can be
viewed with any VRML viewer capable of displaying
VRML 2.0. Many free viewers for noncommercial use are
available; for a list, the reader is referred to the Web3D
consortium’s web site. The model has been tested with the
free Blaxxun Contact Internet Explorer plugin available
from Blaxxun Technologies in version 5.3.

Appendix A

Model mechanics

In principle, it is possible to build this model physically.
All rotations are rigid, and all configuration changes are
effected through five main rotation axes and one auxiliary
rotation axis.

Most of the axis operations are straightforward rotations
and are independent of one another, with three exceptions.

First, a position change of the yellow rider that is used
to switch between Helmholtz and Listing’s systems and to
orient the rotation vector axis within the frontoparallel
plane also necessarily changes ocular torsion. A counter-
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rotation around the turquoise axis is applied with every
change in this slider to compensate for this and keep the
eye upright with changes in the coordinate system.

Secondly, there is an auxiliary axis that is not directly
accessible to the user. A rotation around the red axis can
be employed to tilt the rotation vector axis out of the
gimbal’s main plane. This is necessary for full 3D rotation
vector operation in Listing’s and L2 modes when gaze
mode is set to “gv” and for changes in the reference and
primary positions for Listing’s mode in the “gf” setting
(because the displacement planes are no longer orthogonal
to the reference position in these cases).

Similar to the rotation around the line of sight caused by
changes in the yellow axis position, changes of the red
axis cause gaze to change away from reference. An
additional ring has been nested outside of the turquoise
ring to cancel this. The turquoise ring and this auxiliary
ring are connected through a rotation axis that is collinear
with the red axis as long as no rotation around the green
axis is executed. By counterrotating around this auxiliary
axis with rotations in the red axis, the orientation of the
green axis can then be changed away from the gimbal
plane while keeping the eye stable in space.

Thirdly, for L2 mode with gaze mode selector set to
“gf”, the rotation of the base of the gimbal is linked to the
horizontal vergence state of the eyes in Helmholtz
coordinates such that each eye’s base rotates temporally
by half the total vergence angle. This effects the relocation
of both primary position and reference position to their
new values and enables the rotation vectors to move with
the changed Listing’s plane.
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